一个月刷完机器学习笔试题300题(4)

第四天:

1、下列时间序列模型中,哪一个模型可以较好地拟合波动性的分析和预测。
A AR模型
B MA模型
C ARMA模型
D GARCH模型
解析:AR auto regressive model AR模型是一种线性预测
MA模型(moving average model)滑动平均模型,其中使用趋势移动平均法建立直线趋势的预测模型。
ARMA模型(auto regressive moving average model)自回归滑动平均模型,模型参量法高分辨率谱分析方法之一。这种方法是研究平稳随机过程有理谱的典型方法。它比AR模型法与MA模型法有较精确的谱估计及较优良的谱分辨率性能,但其参数估算比较繁琐。
GARCH模型称为广义ARCH模型,是ARCH模型的拓展,由Bollerslev(1986)发展起来的。它是ARCH模型的推广。GARCH(p,0)模型,相当于ARCH§模型。GARCH模型是一个专门针对金融数据所量体订做的回归模型,除去和普通回归模型相同的之处,GARCH对误差的方差进行了进一步的建模。特别适用于波动性的分析和预测,这样的分析对投资者的决策能起到非常重要的指导性作用,其意义很多时候超过了对数值本身的分析和预测。
正确答案 D
2、以下说法中错误的是()
A SVM对噪声(如来自其他分部的噪声样本)具备鲁棒性
B 在adaboost算法中,所有被分错样本的权重更新比例不相同
C boosting和bagging都是组合多个分类器投票的方法,二者都是根据单个分类器的正确率确定其权重
D 给定n个数据点,如果其中一半用于训练,一半用户测试,则训练误差和测试误差之间的差别会随着n的增加而减少的
解析:
A 软间隔分类器对噪声是有鲁棒性的
B 具体说来,整个Adaboost 迭代算法就3步:
初始化训练数据的权值分布。如果有N个样本,则每一个训练样本最开始时都被赋予相同的权值:1/N。
训练弱分类器。具体训练过程中,如果某个样本点已经被准确地分类,那么在构造下一个训练集中,它的权值就被降低;相反,如果某个样本点没有被准确地分类,那么它的权值就得到提高。然后,权值更新过的样本集被用于训练下一个分类器,整个训练过程如此迭代地进行下去。
将各个训练得到的弱分类器组合成强分类器。各个弱分类器的训练过程结束后,加大分类误差率小的弱分类器的权重,使其在最终的分类函数中起着较大的决定作用,而降低分类误差率大的弱分类器的权重,使其在最终的分类函数中起着较小的决定作用。换言之,误差率低的弱分类器在最终分类器中占的权重较大,否则较小。
C boosting是根据分类器正确率确定权重,bagging不是。
Bagging即套袋法,其算法过程如下:
A)从原始样本集中抽取训练集。每轮从原始样本集中使用Bootstraping的方法抽取n个训练样本(在训练集中,有些样本可能被多次抽取到,而有些样本可能一次都没有被抽中)。共进行k轮抽取,得到k个训练集。(k个训练集之间是相互独立的)
B)每次使用一个训练集得到一个模型,k个训练集共得到k个模型。(注:这里并没有具体的分类算法或回归方法,我们可以根据具体问题采用不同的分类或回归方法,如决策树、感知器等)
C)对分类问题:将上步得到的k个模型采用投票的方式得到分类结果;对回归问题,计算上述模型的均值作为最后的结果。(所有模型的重要性相同)
Boosting其主要思想是将弱分类器组装成一个强分类器。在PAC(概率近似正确)学习框架下,则一定可以将弱分类器组装成一个强分类器。
关于Boosting的两个核心问题:
1)在每一轮如何改变训练数据的权值或概率分布?
通过提高那些在前一轮被弱分类器分错样例的权值,减小前一轮分对样例的权值,来使得分类器对误分的数据有较好的效果。
2)通过什么方式来组合弱分类器?
通过加法模型将弱分类器进行线性组合,比如AdaBoost通过加权多数表决的方式,即增大错误率小的分类器的权值,同时减小错误率较大的分类器的权值。
而提升树通过拟合残差的方式逐步减小残差,将每一步生成的模型叠加得到最终模型。
D 训练集变大会提高模型鲁棒性。
正确答案C
3、你正在使用带有 L1 正则化的 logistic 回归做二分类,其中 C 是正则化参数,w1 和 w2 是 x1 和 x2 的系数。当你把 C 值从 0 增加至非常大的值时,下面哪个选项是正确的?
image
A 第一个 w2 成了 0,接着 w1 也成了 0
B 第一个 w1 成了 0,接着 w2 也成了 0
C w1 和 w2 同时成了 0
D 即使在 C 成为大值之后,w1 和 w2 都不能成 0
解析:L1正则化的函数如图,所以w1和w2可以为0。同时w1和w2是对称的,不会导致一个为0另一个不为0的状态。
正确答案D
4、在 k-均值算法中,以下哪个选项可用于获得全局最小?
A 尝试为不同的质心(centroid)初始化运行算法
B 整迭代的次数
C 找到集群的最佳数量
D 以上所有
解析:所有都可以用来调试以找到全局最小。
正确答案D
5、假设你使用 log-loss 函数作为评估标准。下面这些选项,哪些是对作为评估标准的 log-loss 的正确解释。
A 如果一个分类器对不正确的分类很自信,log-loss 会严重的批评它
B 对一个特别的观察而言,分类器为正确的类别分配非常小的概率,然后对 log-loss 的相应分布会非常大
C log-loss 越低,模型越好
D 以上都是
解析:损失函数总结(https://blog.csdn.net/ZHANG781068447/article/details/82752598)
正确答案D
6、下面哪个选项中哪一项属于确定性算法?
A PCA
B K-Means
C 以上都不是
解析:确定性算法表明在不同运行中,算法输出并不会改变。如果我们再一次运行算法,PCA 会得出相同的结果,而 k-means 不会。
正确答案:A
7、两个变量的 Pearson 相关性系数为零,但这两个变量的值同样可以相关。这句描述是正确还是错误?
A 正确
B 错误
解析:
答案为(A):Pearson相关系数只能衡量线性相关性,但无法衡量非线性关系。如y=x^2,x和y有很强的非线性关系。

8、下面哪个/些超参数的增加可能会造成随机森林数据过拟合?
A 树的数量
B 树的深度
C 学习速率
解析:
答案为(B):通常情况下,我们增加树的深度有可能会造成模型过拟合。学习速率并不是随机森林的超参数。增加树的数量可能会造成欠拟合。
9、下列哪个不属于常用的文本分类的特征选择算法?
A 卡方检验值
B 互信息
C 信息增益
D 主成分分析
解析:
答案D
常采用特征选择方法。常见的六种特征选择方法:
1)DF(Document Frequency) 文档频率
DF:统计特征词出现的文档数量,用来衡量某个特征词的重要性
2)MI(Mutual Information) 互信息法
互信息法用于衡量特征词与文档类别直接的信息量。
如果某个特征词的频率很低,那么互信息得分就会很大,因此互信息法倾向"低频"的特征词。
相对的词频很高的词,得分就会变低,如果这词携带了很高的信息量,互信息法就会变得低效。
3)(Information Gain) 信息增益法
通过某个特征词的缺失与存在的两种情况下,语料中前后信息的增加,衡量某个特征词的重要性。
4)CHI(Chi-square) 卡方检验法
利用了统计学中的"假设检验"的基本思想:首先假设特征词与类别直接是不相关的
如果利用CHI分布计算出的检验值偏离阈值越大,那么更有信心否定原假设,接受原假设的备则假设:特征词与类别有着很高的关联度。
5)WLLR(Weighted Log Likelihood Ration)加权对数似然
6)WFO(Weighted Frequency and Odds)加权频率和可能性
10、机器学习中做特征选择时,可能用到的方法有?
A 卡方
B 信息增益
C 平均互信息
D 期望交叉熵
E 以上都有
正确答案是:E

猜你喜欢

转载自blog.csdn.net/ZHANG781068447/article/details/83690249