推荐系统——电影评分

例子:预测电影评分

有如下信息

Movie Alice (1) Bob (2) Carol (3) Dave (4)
Love at last 5 5 0 0
Romance forever 5 ? ? 0
Cute puppies of love ? 4 0 ?
Nonstop car chases 0 0 5 4
Swords vs. karate 0 0 5 ?

定义

nu = 用户的数量

nm = 电影的数量

r(i, j) = 1 如果用户 j 给电影 i 打分

y(i, j) = 当 r(i, j) = 1 的情况下,用户 j 给电影 i 打的分数(0-5)

目标:预测 ?的值(未评分用户对电影的评分)

现假设每个电影有两个特征

Movie Alice (1) Bob (2) Carol (3) Dave (4)

x1

(remoance)

x2

(remoance)

Love at last 5 5 0 0 0.9 0
Romance forever 5 ? ? 0 1.0 0.01
Cute puppies of love ? 4 0 ? 0.99 0
Nonstop car chases 0 0 5 4 0.1 1.0
Swords vs. karate 0 0 5 ? 0 0.9

这样就有了电影特征的训练集,比如对于电影 Love at least 的特征向量为

\[{x^{\left( 1 \right)}} = \left[ {\begin{array}{*{20}{c}}
{{x_0}}\\
{{x_1}}\\
{{x_2}}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1\\
{0.9}\\
0
\end{array}} \right]\]

对于每个用户 j ,学习其对应的单数 θ(j) ∈ R3,然后用 (θ(1))Tx(i) 预测用户 j 对于电影 i 的评分。

用 m(j) = 代表用户 j 评分的电影的数量,则定义学习目标

\[\underbrace {\min }_{{\theta ^{\left( j \right)}}}\frac{1}{{2{m^{\left( j \right)}}}}\sum\limits_{i:{r^{\left( {i,j} \right)}} = 1} {{{\left( {{{\left( {{\theta ^{\left( j \right)}}} \right)}^T}\left( {{x^{\left( i \right)}}} \right) - {y^{\left( {i,j} \right)}}} \right)}^2}}  + \frac{\lambda }{{2{m^{\left( j \right)}}}}\sum\limits_{k = 1}^n {{{\left( {\theta _k^{\left( j \right)}} \right)}^2}} \]

在推荐系统中会将 m(j) 去掉,因为他是常数且不会影响计算得到的 θ(j)

\[\underbrace {\min }_{{\theta ^{\left( j \right)}}}\frac{1}{2}\sum\limits_{i:{r^{\left( {i,j} \right)}} = 1} {{{\left( {{{\left( {{\theta ^{\left( j \right)}}} \right)}^T}\left( {{x^{\left( i \right)}}} \right) - {y^{\left( {i,j} \right)}}} \right)}^2}}  + \frac{\lambda }{2}\sum\limits_{k = 1}^n {{{\left( {\theta _k^{\left( j \right)}} \right)}^2}} \]

定义所有用户的学习目标

\[\underbrace {\min }_{{\theta ^{\left( 1 \right)}},...,{\theta ^{\left( {{n_u}} \right)}}}\frac{1}{2}\sum\limits_{j = 1}^{{n_u}} {\left[ {\sum\limits_{i:{r^{\left( {i,j} \right)}} = 1} {{{\left( {{{\left( {{\theta ^{\left( j \right)}}} \right)}^T}\left( {{x^{\left( i \right)}}} \right) - {y^{\left( {i,j} \right)}}} \right)}^2}}  + \lambda \sum\limits_{k = 1}^n {{{\left( {\theta _k^{\left( j \right)}} \right)}^2}} } \right]} \]

 然后运用梯度下降算法得到最优的 θ

\[\begin{array}{l}
\theta _k^{\left( j \right)}: = \theta _k^{\left( j \right)} - \alpha \sum\limits_{i:{r^{\left( {i,j} \right)}} = 1} {\left( {{{\left( {{\theta ^{\left( j \right)}}} \right)}^T}\left( {{x^{\left( i \right)}}} \right) - {y^{\left( {i,j} \right)}}} \right)x_k^{\left( i \right)}} ---for-k=0\\
\theta _k^{\left( j \right)}: = \theta _k^{\left( j \right)} - \alpha \left( {\sum\limits_{i:{r^{\left( {i,j} \right)}} = 1} {\left( {{{\left( {{\theta ^{\left( j \right)}}} \right)}^T}\left( {{x^{\left( i \right)}}} \right) - {y^{\left( {i,j} \right)}}} \right)x_k^{\left( i \right)} + + \lambda \theta _k^{\left( j \right)}} } \right)---for-k≠0
\end{array}\]

猜你喜欢

转载自www.cnblogs.com/qkloveslife/p/9908364.html
今日推荐