37.以太坊源码分析(37)eth以太坊协议分析

node中的服务的定义, eth其实就是实现了一个服务。

type Service interface {
    // Protocols retrieves the P2P protocols the service wishes to start.
    Protocols() []p2p.Protocol

    // APIs retrieves the list of RPC descriptors the service provides
    APIs() []rpc.API

    // Start is called after all services have been constructed and the networking
    // layer was also initialized to spawn any goroutines required by the service.
    Start(server *p2p.Server) error

    // Stop terminates all goroutines belonging to the service, blocking until they
    // are all terminated.
    Stop() error
}

go ethereum 的eth目录是以太坊服务的实现。 以太坊协议是通过node的Register方法注入的。

// RegisterEthService adds an Ethereum client to the stack.
func RegisterEthService(stack *node.Node, cfg *eth.Config) {
    var err error
    if cfg.SyncMode == downloader.LightSync {
        err = stack.Register(func(ctx *node.ServiceContext) (node.Service, error) {
            return les.New(ctx, cfg)
        })
    } else {
        err = stack.Register(func(ctx *node.ServiceContext) (node.Service, error) {
            fullNode, err := eth.New(ctx, cfg)
            if fullNode != nil && cfg.LightServ > 0 {
                ls, _ := les.NewLesServer(fullNode, cfg)
                fullNode.AddLesServer(ls)
            }
            return fullNode, err
        })
    }
    if err != nil {
        Fatalf("Failed to register the Ethereum service: %v", err)
    }
}

以太坊协议的数据结构

// Ethereum implements the Ethereum full node service.
type Ethereum struct {
    config      *Config                 配置
    chainConfig *params.ChainConfig     链配置

    // Channel for shutting down the service
    shutdownChan  chan bool    // Channel for shutting down the ethereum
    stopDbUpgrade func() error // stop chain db sequential key upgrade

    // Handlers
    txPool          *core.TxPool            交易池
    blockchain      *core.BlockChain        区块链
    protocolManager *ProtocolManager        协议管理
    lesServer       LesServer               轻量级客户端服务器

    // DB interfaces
    chainDb ethdb.Database // Block chain database  区块链数据库

    eventMux       *event.TypeMux
    engine         consensus.Engine             一致性引擎。 应该是Pow部分
    accountManager *accounts.Manager            账号管理

    bloomRequests chan chan *bloombits.Retrieval // Channel receiving bloom data retrieval requests 接收bloom过滤器数据请求的通道
    bloomIndexer  *core.ChainIndexer             // Bloom indexer operating during block imports  //在区块import的时候执行Bloom indexer操作 暂时不清楚是什么

    ApiBackend *EthApiBackend       //提供给RPC服务使用的API后端

    miner     *miner.Miner          //矿工
    gasPrice  *big.Int              //节点接收的gasPrice的最小值。 比这个值更小的交易会被本节点拒绝
    etherbase common.Address        //矿工地址

    networkId     uint64            //网络ID  testnet是0 mainnet是1 
    netRPCService *ethapi.PublicNetAPI  //RPC的服务

    lock sync.RWMutex // Protects the variadic fields (e.g. gas price and etherbase)
}

以太坊协议的创建New. 暂时先不涉及core的内容。 只是大概介绍一下。 core里面的内容后续会分析。

// New creates a new Ethereum object (including the
// initialisation of the common Ethereum object)
func New(ctx *node.ServiceContext, config *Config) (*Ethereum, error) {
    if config.SyncMode == downloader.LightSync {
        return nil, errors.New("can't run eth.Ethereum in light sync mode, use les.LightEthereum")
    }
    if !config.SyncMode.IsValid() {
        return nil, fmt.Errorf("invalid sync mode %d", config.SyncMode)
    }
    // 创建leveldb。 打开或者新建 chaindata目录
    chainDb, err := CreateDB(ctx, config, "chaindata")
    if err != nil {
        return nil, err
    }
    // 数据库格式升级
    stopDbUpgrade := upgradeDeduplicateData(chainDb)
    // 设置创世区块。 如果数据库里面已经有创世区块那么从数据库里面取出(私链)。或者是从代码里面获取默认值。
    chainConfig, genesisHash, genesisErr := core.SetupGenesisBlock(chainDb, config.Genesis)
    if _, ok := genesisErr.(*params.ConfigCompatError); genesisErr != nil && !ok {
        return nil, genesisErr
    }
    log.Info("Initialised chain configuration", "config", chainConfig)

    eth := &Ethereum{
        config:         config,
        chainDb:        chainDb,
        chainConfig:    chainConfig,
        eventMux:       ctx.EventMux,
        accountManager: ctx.AccountManager,
        engine:         CreateConsensusEngine(ctx, config, chainConfig, chainDb), // 一致性引擎。 这里我理解是Pow
        shutdownChan:   make(chan bool),
        stopDbUpgrade:  stopDbUpgrade,
        networkId:      config.NetworkId,  // 网络ID用来区别网路。 测试网络是0.主网是1
        gasPrice:       config.GasPrice,   // 可以通过配置 --gasprice 客户端接纳的交易的gasprice最小值。如果小于这个值那么会被节点丢弃。 
        etherbase:      config.Etherbase,  //挖矿的受益者
        bloomRequests:  make(chan chan *bloombits.Retrieval),  //bloom的请求
        bloomIndexer:   NewBloomIndexer(chainDb, params.BloomBitsBlocks),
    }

    log.Info("Initialising Ethereum protocol", "versions", ProtocolVersions, "network", config.NetworkId)

    if !config.SkipBcVersionCheck { // 检查数据库里面存储的BlockChainVersion和客户端的BlockChainVersion的版本是否一致
        bcVersion := core.GetBlockChainVersion(chainDb)
        if bcVersion != core.BlockChainVersion && bcVersion != 0 {
            return nil, fmt.Errorf("Blockchain DB version mismatch (%d / %d). Run geth upgradedb.\n", bcVersion, core.BlockChainVersion)
        }
        core.WriteBlockChainVersion(chainDb, core.BlockChainVersion)
    }

    vmConfig := vm.Config{EnablePreimageRecording: config.EnablePreimageRecording}
    // 使用数据库创建了区块链
    eth.blockchain, err = core.NewBlockChain(chainDb, eth.chainConfig, eth.engine, vmConfig)
    if err != nil {
        return nil, err
    }
    // Rewind the chain in case of an incompatible config upgrade.
    if compat, ok := genesisErr.(*params.ConfigCompatError); ok {
        log.Warn("Rewinding chain to upgrade configuration", "err", compat)
        eth.blockchain.SetHead(compat.RewindTo)
        core.WriteChainConfig(chainDb, genesisHash, chainConfig)
    }
    // bloomIndexer 暂时不知道是什么东西 这里面涉及得也不是很多。 暂时先不管了
    eth.bloomIndexer.Start(eth.blockchain.CurrentHeader(), eth.blockchain.SubscribeChainEvent)

    if config.TxPool.Journal != "" {
        config.TxPool.Journal = ctx.ResolvePath(config.TxPool.Journal)
    }
    // 创建交易池。 用来存储本地或者在网络上接收到的交易。
    eth.txPool = core.NewTxPool(config.TxPool, eth.chainConfig, eth.blockchain)
    // 创建协议管理器
    if eth.protocolManager, err = NewProtocolManager(eth.chainConfig, config.SyncMode, config.NetworkId, eth.eventMux, eth.txPool, eth.engine, eth.blockchain, chainDb); err != nil {
        return nil, err
    }
    // 创建矿工
    eth.miner = miner.New(eth, eth.chainConfig, eth.EventMux(), eth.engine)
    eth.miner.SetExtra(makeExtraData(config.ExtraData))
    // ApiBackend 用于给RPC调用提供后端支持
    eth.ApiBackend = &EthApiBackend{eth, nil}
    // gpoParams GPO Gas Price Oracle 的缩写。 GasPrice预测。 通过最近的交易来预测当前的GasPrice的值。这个值可以作为之后发送交易的费用的参考。
    gpoParams := config.GPO
    if gpoParams.Default == nil {
        gpoParams.Default = config.GasPrice
    }
    eth.ApiBackend.gpo = gasprice.NewOracle(eth.ApiBackend, gpoParams)

    return eth, nil
}

ApiBackend 定义在 api_backend.go文件中。 封装了一些函数。

// EthApiBackend implements ethapi.Backend for full nodes
type EthApiBackend struct {
    eth *Ethereum
    gpo *gasprice.Oracle
}
func (b *EthApiBackend) SetHead(number uint64) {
    b.eth.protocolManager.downloader.Cancel()
    b.eth.blockchain.SetHead(number)
}

New方法中除了core中的一些方法, 有一个ProtocolManager的对象在以太坊协议中比较重要, 以太坊本来是一个协议。ProtocolManager中又可以管理多个以太坊的子协议。

// NewProtocolManager returns a new ethereum sub protocol manager. The Ethereum sub protocol manages peers capable
// with the ethereum network.
func NewProtocolManager(config *params.ChainConfig, mode downloader.SyncMode, networkId uint64, mux *event.TypeMux, txpool txPool, engine consensus.Engine, blockchain *core.BlockChain, chaindb ethdb.Database) (*ProtocolManager, error) {
    // Create the protocol manager with the base fields
    manager := &ProtocolManager{
        networkId:   networkId,
        eventMux:    mux,
        txpool:      txpool,
        blockchain:  blockchain,
        chaindb:     chaindb,
        chainconfig: config,
        peers:       newPeerSet(),
        newPeerCh:   make(chan *peer),
        noMorePeers: make(chan struct{}),
        txsyncCh:    make(chan *txsync),
        quitSync:    make(chan struct{}),
    }
    // Figure out whether to allow fast sync or not
    if mode == downloader.FastSync && blockchain.CurrentBlock().NumberU64() > 0 {
        log.Warn("Blockchain not empty, fast sync disabled")
        mode = downloader.FullSync
    }
    if mode == downloader.FastSync {
        manager.fastSync = uint32(1)
    }
    // Initiate a sub-protocol for every implemented version we can handle
    manager.SubProtocols = make([]p2p.Protocol, 0, len(ProtocolVersions))
    for i, version := range ProtocolVersions {
        // Skip protocol version if incompatible with the mode of operation
        if mode == downloader.FastSync && version < eth63 {
            continue
        }
        // Compatible; initialise the sub-protocol
        version := version // Closure for the run
        manager.SubProtocols = append(manager.SubProtocols, p2p.Protocol{
            Name:    ProtocolName,
            Version: version,
            Length:  ProtocolLengths[i],
            // 还记得p2p里面的Protocol么。 p2p的peer连接成功之后会调用Run方法
            Run: func(p *p2p.Peer, rw p2p.MsgReadWriter) error {
                peer := manager.newPeer(int(version), p, rw)
                select {
                case manager.newPeerCh <- peer:
                    manager.wg.Add(1)
                    defer manager.wg.Done()
                    return manager.handle(peer)
                case <-manager.quitSync:
                    return p2p.DiscQuitting
                }
            },
            NodeInfo: func() interface{} {
                return manager.NodeInfo()
            },
            PeerInfo: func(id discover.NodeID) interface{} {
                if p := manager.peers.Peer(fmt.Sprintf("%x", id[:8])); p != nil {
                    return p.Info()
                }
                return nil
            },
        })
    }
    if len(manager.SubProtocols) == 0 {
        return nil, errIncompatibleConfig
    }
    // Construct the different synchronisation mechanisms
    // downloader是负责从其他的peer来同步自身数据。
    // downloader是全链同步工具
    manager.downloader = downloader.New(mode, chaindb, manager.eventMux, blockchain, nil, manager.removePeer)
    // validator 是使用一致性引擎来验证区块头的函数
    validator := func(header *types.Header) error {
        return engine.VerifyHeader(blockchain, header, true)
    }
    // 返回区块高度的函数
    heighter := func() uint64 {
        return blockchain.CurrentBlock().NumberU64()
    }
    // 如果fast sync开启了。 那么不会调用inserter。
    inserter := func(blocks types.Blocks) (int, error) {
        // If fast sync is running, deny importing weird blocks
        if atomic.LoadUint32(&manager.fastSync) == 1 {
            log.Warn("Discarded bad propagated block", "number", blocks[0].Number(), "hash", blocks[0].Hash())
            return 0, nil
        }
        // 设置开始接收交易
        atomic.StoreUint32(&manager.acceptTxs, 1) // Mark initial sync done on any fetcher import
        // 插入区块
        return manager.blockchain.InsertChain(blocks)
    }
    // 生成一个fetcher 
    // Fetcher负责积累来自各个peer的区块通知并安排进行检索。
    manager.fetcher = fetcher.New(blockchain.GetBlockByHash, validator, manager.BroadcastBlock, heighter, inserter, manager.removePeer)

    return manager, nil
}

服务的APIs()方法会返回服务暴露的RPC方法。

// APIs returns the collection of RPC services the ethereum package offers.
// NOTE, some of these services probably need to be moved to somewhere else.
func (s *Ethereum) APIs() []rpc.API {
    apis := ethapi.GetAPIs(s.ApiBackend)

    // Append any APIs exposed explicitly by the consensus engine
    apis = append(apis, s.engine.APIs(s.BlockChain())...)

    // Append all the local APIs and return
    return append(apis, []rpc.API{
        {
            Namespace: "eth",
            Version:   "1.0",
            Service:   NewPublicEthereumAPI(s),
            Public:    true,
        },
        ...
        , {
            Namespace: "net",
            Version:   "1.0",
            Service:   s.netRPCService,
            Public:    true,
        },
    }...)
}

服务的Protocols方法会返回服务提供了那些p2p的Protocol。 返回协议管理器里面的所有SubProtocols. 如果有lesServer那么还提供lesServer的Protocol。可以看到。所有的网络功能都是通过Protocol的方式提供出来的。

// Protocols implements node.Service, returning all the currently configured
// network protocols to start.
func (s *Ethereum) Protocols() []p2p.Protocol {
    if s.lesServer == nil {
        return s.protocolManager.SubProtocols
    }
    return append(s.protocolManager.SubProtocols, s.lesServer.Protocols()...)
}

Ethereum服务在创建之后,会被调用服务的Start方法。下面我们来看看Start方法

// Start implements node.Service, starting all internal goroutines needed by the
// Ethereum protocol implementation.
func (s *Ethereum) Start(srvr *p2p.Server) error {
    // Start the bloom bits servicing goroutines
    // 启动布隆过滤器请求处理的goroutine TODO
    s.startBloomHandlers()

    // Start the RPC service
    // 创建网络的API net
    s.netRPCService = ethapi.NewPublicNetAPI(srvr, s.NetVersion())

    // Figure out a max peers count based on the server limits
    maxPeers := srvr.MaxPeers
    if s.config.LightServ > 0 {
        maxPeers -= s.config.LightPeers
        if maxPeers < srvr.MaxPeers/2 {
            maxPeers = srvr.MaxPeers / 2
        }
    }
    // Start the networking layer and the light server if requested
    // 启动协议管理器
    s.protocolManager.Start(maxPeers)
    if s.lesServer != nil {
        // 如果lesServer不为nil 启动它。
        s.lesServer.Start(srvr)
    }
    return nil
}

协议管理器的数据结构

type ProtocolManager struct {
    networkId uint64

    fastSync  uint32 // Flag whether fast sync is enabled (gets disabled if we already have blocks)
    acceptTxs uint32 // Flag whether we're considered synchronised (enables transaction processing)

    txpool      txPool
    blockchain  *core.BlockChain
    chaindb     ethdb.Database
    chainconfig *params.ChainConfig
    maxPeers    int

    downloader *downloader.Downloader
    fetcher    *fetcher.Fetcher
    peers      *peerSet

    SubProtocols []p2p.Protocol

    eventMux      *event.TypeMux
    txCh          chan core.TxPreEvent
    txSub         event.Subscription
    minedBlockSub *event.TypeMuxSubscription

    // channels for fetcher, syncer, txsyncLoop
    newPeerCh   chan *peer
    txsyncCh    chan *txsync
    quitSync    chan struct{}
    noMorePeers chan struct{}

    // wait group is used for graceful shutdowns during downloading
    // and processing
    wg sync.WaitGroup
}

协议管理器的Start方法。这个方法里面启动了大量的goroutine用来处理各种事务,可以推测,这个类应该是以太坊服务的主要实现类。

func (pm *ProtocolManager) Start(maxPeers int) {
    pm.maxPeers = maxPeers
    
    // broadcast transactions
    // 广播交易的通道。 txCh会作为txpool的TxPreEvent订阅通道。txpool有了这种消息会通知给这个txCh。 广播交易的goroutine会把这个消息广播出去。
    pm.txCh = make(chan core.TxPreEvent, txChanSize)
    // 订阅的回执
    pm.txSub = pm.txpool.SubscribeTxPreEvent(pm.txCh)
    // 启动广播的goroutine
    go pm.txBroadcastLoop()

    // broadcast mined blocks
    // 订阅挖矿消息。当新的Block被挖出来的时候会产生消息。 这个订阅和上面的那个订阅采用了两种不同的模式,这种是标记为Deprecated的订阅方式。
    pm.minedBlockSub = pm.eventMux.Subscribe(core.NewMinedBlockEvent{})
    // 挖矿广播 goroutine 当挖出来的时候需要尽快的广播到网络上面去。
    go pm.minedBroadcastLoop()

    // start sync handlers
    // 同步器负责周期性地与网络同步,下载散列和块以及处理通知处理程序。
    go pm.syncer()
    // txsyncLoop负责每个新连接的初始事务同步。 当新的peer出现时,我们转发所有当前待处理的事务。 为了最小化出口带宽使用,我们一次只发送一个小包。
    go pm.txsyncLoop()
}

当p2p的server启动的时候,会主动的找节点去连接,或者被其他的节点连接。 连接的过程是首先进行加密信道的握手,然后进行协议的握手。 最后为每个协议启动goroutine 执行Run方法来把控制交给最终的协议。 这个run方法首先创建了一个peer对象,然后调用了handle方法来处理这个peer

Run: func(p *p2p.Peer, rw p2p.MsgReadWriter) error {
                    peer := manager.newPeer(int(version), p, rw)
                    select {
                    case manager.newPeerCh <- peer:  //把peer发送到newPeerCh通道
                        manager.wg.Add(1)
                        defer manager.wg.Done()
                        return manager.handle(peer)  // 调用handlo方法
                    case <-manager.quitSync:
                        return p2p.DiscQuitting
                    }
                },

handle方法,

// handle is the callback invoked to manage the life cycle of an eth peer. When
// this function terminates, the peer is disconnected.
// handle是一个回调方法,用来管理eth的peer的生命周期管理。 当这个方法退出的时候,peer的连接也会断开。
func (pm *ProtocolManager) handle(p *peer) error {
    if pm.peers.Len() >= pm.maxPeers {
        return p2p.DiscTooManyPeers
    }
    p.Log().Debug("Ethereum peer connected", "name", p.Name())

    // Execute the Ethereum handshake
    td, head, genesis := pm.blockchain.Status()
    // td是total difficult, head是当前的区块头,genesis是创世区块的信息。 只有创世区块相同才能握手成功。
    if err := p.Handshake(pm.networkId, td, head, genesis); err != nil {
        p.Log().Debug("Ethereum handshake failed", "err", err)
        return err
    }
    if rw, ok := p.rw.(*meteredMsgReadWriter); ok {
        rw.Init(p.version)
    }
    // Register the peer locally
    // 把peer注册到本地
    if err := pm.peers.Register(p); err != nil {
        p.Log().Error("Ethereum peer registration failed", "err", err)
        return err
    }
    defer pm.removePeer(p.id)

    // Register the peer in the downloader. If the downloader considers it banned, we disconnect
    // 把peer注册给downloader. 如果downloader认为这个peer被禁,那么断开连接。
    if err := pm.downloader.RegisterPeer(p.id, p.version, p); err != nil {
        return err
    }
    // Propagate existing transactions. new transactions appearing
    // after this will be sent via broadcasts.
    // 把当前pending的交易发送给对方,这个只在连接刚建立的时候发生
    pm.syncTransactions(p)

    // If we're DAO hard-fork aware, validate any remote peer with regard to the hard-fork
    // 验证peer的DAO硬分叉
    if daoBlock := pm.chainconfig.DAOForkBlock; daoBlock != nil {
        // Request the peer's DAO fork header for extra-data validation
        if err := p.RequestHeadersByNumber(daoBlock.Uint64(), 1, 0, false); err != nil {
            return err
        }
        // Start a timer to disconnect if the peer doesn't reply in time
        // 如果15秒内没有接收到回应。那么断开连接。
        p.forkDrop = time.AfterFunc(daoChallengeTimeout, func() {
            p.Log().Debug("Timed out DAO fork-check, dropping")
            pm.removePeer(p.id)
        })
        // Make sure it's cleaned up if the peer dies off
        defer func() {
            if p.forkDrop != nil {
                p.forkDrop.Stop()
                p.forkDrop = nil
            }
        }()
    }
    // main loop. handle incoming messages.
    // 主循环。 处理进入的消息。
    for {
        if err := pm.handleMsg(p); err != nil {
            p.Log().Debug("Ethereum message handling failed", "err", err)
            return err
        }
    }
}

Handshake

// Handshake executes the eth protocol handshake, negotiating version number,
// network IDs, difficulties, head and genesis blocks.
func (p *peer) Handshake(network uint64, td *big.Int, head common.Hash, genesis common.Hash) error {
    // Send out own handshake in a new thread
    // error的channel的大小是2, 就是为了一次性处理下面的两个goroutine方法
    errc := make(chan error, 2)
    var status statusData // safe to read after two values have been received from errc

    go func() {
        errc <- p2p.Send(p.rw, StatusMsg, &statusData{
            ProtocolVersion: uint32(p.version),
            NetworkId:       network,
            TD:              td,
            CurrentBlock:    head,
            GenesisBlock:    genesis,
        })
    }()
    go func() {
        errc <- p.readStatus(network, &status, genesis)
    }()
    timeout := time.NewTimer(handshakeTimeout)
    defer timeout.Stop()
    // 如果接收到任何一个错误(发送,接收),或者是超时, 那么就断开连接。
    for i := 0; i < 2; i++ {
        select {
        case err := <-errc:
            if err != nil {
                return err
            }
        case <-timeout.C:
            return p2p.DiscReadTimeout
        }
    }
    p.td, p.head = status.TD, status.CurrentBlock
    return nil
}

readStatus,检查对端返回的各种情况,

func (p *peer) readStatus(network uint64, status *statusData, genesis common.Hash) (err error) {
    msg, err := p.rw.ReadMsg()
    if err != nil {
        return err
    }
    if msg.Code != StatusMsg {
        return errResp(ErrNoStatusMsg, "first msg has code %x (!= %x)", msg.Code, StatusMsg)
    }
    if msg.Size > ProtocolMaxMsgSize {
        return errResp(ErrMsgTooLarge, "%v > %v", msg.Size, ProtocolMaxMsgSize)
    }
    // Decode the handshake and make sure everything matches
    if err := msg.Decode(&status); err != nil {
        return errResp(ErrDecode, "msg %v: %v", msg, err)
    }
    if status.GenesisBlock != genesis {
        return errResp(ErrGenesisBlockMismatch, "%x (!= %x)", status.GenesisBlock[:8], genesis[:8])
    }
    if status.NetworkId != network {
        return errResp(ErrNetworkIdMismatch, "%d (!= %d)", status.NetworkId, network)
    }
    if int(status.ProtocolVersion) != p.version {
        return errResp(ErrProtocolVersionMismatch, "%d (!= %d)", status.ProtocolVersion, p.version)
    }
    return nil
}

Register 简单的把peer加入到自己的peers的map

// Register injects a new peer into the working set, or returns an error if the
// peer is already known.
func (ps *peerSet) Register(p *peer) error {
    ps.lock.Lock()
    defer ps.lock.Unlock()

    if ps.closed {
        return errClosed
    }
    if _, ok := ps.peers[p.id]; ok {
        return errAlreadyRegistered
    }
    ps.peers[p.id] = p
    return nil
}

经过一系列的检查和握手之后, 循环的调用了handleMsg方法来处理事件循环。 这个方法很长,主要是处理接收到各种消息之后的应对措施。

// handleMsg is invoked whenever an inbound message is received from a remote
// peer. The remote connection is turn down upon returning any error.
func (pm *ProtocolManager) handleMsg(p *peer) error {
    // Read the next message from the remote peer, and ensure it's fully consumed
    msg, err := p.rw.ReadMsg()
    if err != nil {
        return err
    }
    if msg.Size > ProtocolMaxMsgSize {
        return errResp(ErrMsgTooLarge, "%v > %v", msg.Size, ProtocolMaxMsgSize)
    }
    defer msg.Discard()

    // Handle the message depending on its contents
    switch {
    case msg.Code == StatusMsg:
        // Status messages should never arrive after the handshake
        // StatusMsg应该在HandleShake阶段接收到。 经过了HandleShake之后是不应该接收到这种消息的。
        return errResp(ErrExtraStatusMsg, "uncontrolled status message")

    // Block header query, collect the requested headers and reply
    // 接收到请求区块头的消息, 会根据请求返回区块头信息。
    case msg.Code == GetBlockHeadersMsg:
        // Decode the complex header query
        var query getBlockHeadersData
        if err := msg.Decode(&query); err != nil {
            return errResp(ErrDecode, "%v: %v", msg, err)
        }
        hashMode := query.Origin.Hash != (common.Hash{})

        // Gather headers until the fetch or network limits is reached
        var (
            bytes   common.StorageSize
            headers []*types.Header
            unknown bool
        )
        for !unknown && len(headers) < int(query.Amount) && bytes < softResponseLimit && len(headers) < downloader.MaxHeaderFetch {
            // Retrieve the next header satisfying the query
            var origin *types.Header
            if hashMode {
                origin = pm.blockchain.GetHeaderByHash(query.Origin.Hash)
            } else {
                origin = pm.blockchain.GetHeaderByNumber(query.Origin.Number)
            }
            if origin == nil {
                break
            }
            number := origin.Number.Uint64()
            headers = append(headers, origin)
            bytes += estHeaderRlpSize

            // Advance to the next header of the query
            switch {
            case query.Origin.Hash != (common.Hash{}) && query.Reverse:
                // Hash based traversal towards the genesis block
                // 从Hash指定的开始朝创世区块移动。 也就是反向移动。  通过hash查找
                for i := 0; i < int(query.Skip)+1; i++ {
                    if header := pm.blockchain.GetHeader(query.Origin.Hash, number); header != nil {// 通过hash和number获取前一个区块头
                    
                        query.Origin.Hash = header.ParentHash
                        number--
                    } else {
                        unknown = true
                        break //break是跳出switch。 unknow用来跳出循环。
                    }
                }
            case query.Origin.Hash != (common.Hash{}) && !query.Reverse:
                // Hash based traversal towards the leaf block
                // 通过hash来查找
                var (
                    current = origin.Number.Uint64()
                    next    = current + query.Skip + 1
                )
                if next <= current { //正向, 但是next比当前还小,防备整数溢出攻击。
                    infos, _ := json.MarshalIndent(p.Peer.Info(), "", "  ")
                    p.Log().Warn("GetBlockHeaders skip overflow attack", "current", current, "skip", query.Skip, "next", next, "attacker", infos)
                    unknown = true
                } else {
                    if header := pm.blockchain.GetHeaderByNumber(next); header != nil {
                        if pm.blockchain.GetBlockHashesFromHash(header.Hash(), query.Skip+1)[query.Skip] == query.Origin.Hash {
                            // 如果可以找到这个header,而且这个header和origin在同一个链上。
                            query.Origin.Hash = header.Hash()
                        } else {
                            unknown = true
                        }
                    } else {
                        unknown = true
                    }
                }
            case query.Reverse:     // 通过number查找
                // Number based traversal towards the genesis block
                //  query.Origin.Hash == (common.Hash{}) 
                if query.Origin.Number >= query.Skip+1 {
                    query.Origin.Number -= (query.Skip + 1)
                } else {
                    unknown = true
                }

            case !query.Reverse:     //通过number查找
                // Number based traversal towards the leaf block
                query.Origin.Number += (query.Skip + 1)
            }
        }
        return p.SendBlockHeaders(headers)

    case msg.Code == BlockHeadersMsg: //接收到了GetBlockHeadersMsg的回答。
        // A batch of headers arrived to one of our previous requests
        var headers []*types.Header
        if err := msg.Decode(&headers); err != nil {
            return errResp(ErrDecode, "msg %v: %v", msg, err)
        }
        // If no headers were received, but we're expending a DAO fork check, maybe it's that
        // 如果对端没有返回任何的headers,而且forkDrop不为空,那么应该是我们的DAO检查的请求,我们之前在HandShake发送了DAO header的请求。
        if len(headers) == 0 && p.forkDrop != nil {
            // Possibly an empty reply to the fork header checks, sanity check TDs
            verifyDAO := true

            // If we already have a DAO header, we can check the peer's TD against it. If
            // the peer's ahead of this, it too must have a reply to the DAO check
            if daoHeader := pm.blockchain.GetHeaderByNumber(pm.chainconfig.DAOForkBlock.Uint64()); daoHeader != nil {
                if _, td := p.Head(); td.Cmp(pm.blockchain.GetTd(daoHeader.Hash(), daoHeader.Number.Uint64())) >= 0 {
                    //这个时候检查对端的total difficult 是否已经超过了DAO分叉区块的td值, 如果超过了,说明对端应该存在这个区块头, 但是返回的空白的,那么这里验证失败。 这里什么都没有做。 如果对端还不发送,那么会被超时退出。
                    verifyDAO = false
                }
            }
            // If we're seemingly on the same chain, disable the drop timer
            if verifyDAO { // 如果验证成功,那么删除掉计时器,然后返回。
                p.Log().Debug("Seems to be on the same side of the DAO fork")
                p.forkDrop.Stop()
                p.forkDrop = nil
                return nil
            }
        }
        // Filter out any explicitly requested headers, deliver the rest to the downloader
        // 过滤出任何非常明确的请求, 然后把剩下的投递给downloader
        // 如果长度是1 那么filter为true
        filter := len(headers) == 1
        if filter {
            // If it's a potential DAO fork check, validate against the rules
            if p.forkDrop != nil && pm.chainconfig.DAOForkBlock.Cmp(headers[0].Number) == 0 {  //DAO检查
                // Disable the fork drop timer
                p.forkDrop.Stop()
                p.forkDrop = nil

                // Validate the header and either drop the peer or continue
                if err := misc.VerifyDAOHeaderExtraData(pm.chainconfig, headers[0]); err != nil {
                    p.Log().Debug("Verified to be on the other side of the DAO fork, dropping")
                    return err
                }
                p.Log().Debug("Verified to be on the same side of the DAO fork")
                return nil
            }
            // Irrelevant of the fork checks, send the header to the fetcher just in case
            // 如果不是DAO的请求,交给过滤器进行过滤。过滤器会返回需要继续处理的headers,这些headers会被交给downloader进行分发。
            headers = pm.fetcher.FilterHeaders(p.id, headers, time.Now())
        }
        if len(headers) > 0 || !filter {
            err := pm.downloader.DeliverHeaders(p.id, headers)
            if err != nil {
                log.Debug("Failed to deliver headers", "err", err)
            }
        }

    case msg.Code == GetBlockBodiesMsg:
        //  Block Body的请求 这个比较简单。 从blockchain里面获取body返回就行。
        // Decode the retrieval message
        msgStream := rlp.NewStream(msg.Payload, uint64(msg.Size))
        if _, err := msgStream.List(); err != nil {
            return err
        }
        // Gather blocks until the fetch or network limits is reached
        var (
            hash   common.Hash
            bytes  int
            bodies []rlp.RawValue
        )
        for bytes < softResponseLimit && len(bodies) < downloader.MaxBlockFetch {
            // Retrieve the hash of the next block
            if err := msgStream.Decode(&hash); err == rlp.EOL {
                break
            } else if err != nil {
                return errResp(ErrDecode, "msg %v: %v", msg, err)
            }
            // Retrieve the requested block body, stopping if enough was found
            if data := pm.blockchain.GetBodyRLP(hash); len(data) != 0 {
                bodies = append(bodies, data)
                bytes += len(data)
            }
        }
        return p.SendBlockBodiesRLP(bodies)

    case msg.Code == BlockBodiesMsg:
        // A batch of block bodies arrived to one of our previous requests
        var request blockBodiesData
        if err := msg.Decode(&request); err != nil {
            return errResp(ErrDecode, "msg %v: %v", msg, err)
        }
        // Deliver them all to the downloader for queuing
        trasactions := make([][]*types.Transaction, len(request))
        uncles := make([][]*types.Header, len(request))

        for i, body := range request {
            trasactions[i] = body.Transactions
            uncles[i] = body.Uncles
        }
        // Filter out any explicitly requested bodies, deliver the rest to the downloader
        // 过滤掉任何显示的请求, 剩下的交给downloader
        filter := len(trasactions) > 0 || len(uncles) > 0
        if filter {
            trasactions, uncles = pm.fetcher.FilterBodies(p.id, trasactions, uncles, time.Now())
        }
        if len(trasactions) > 0 || len(uncles) > 0 || !filter {
            err := pm.downloader.DeliverBodies(p.id, trasactions, uncles)
            if err != nil {
                log.Debug("Failed to deliver bodies", "err", err)
            }
        }

    case p.version >= eth63 && msg.Code == GetNodeDataMsg:
        // 对端的版本是eth63 而且是请求NodeData
        // Decode the retrieval message
        msgStream := rlp.NewStream(msg.Payload, uint64(msg.Size))
        if _, err := msgStream.List(); err != nil {
            return err
        }
        // Gather state data until the fetch or network limits is reached
        var (
            hash  common.Hash
            bytes int
            data  [][]byte
        )
        for bytes < softResponseLimit && len(data) < downloader.MaxStateFetch {
            // Retrieve the hash of the next state entry
            if err := msgStream.Decode(&hash); err == rlp.EOL {
                break
            } else if err != nil {
                return errResp(ErrDecode, "msg %v: %v", msg, err)
            }
            // Retrieve the requested state entry, stopping if enough was found
            // 请求的任何hash值都会返回给对方。 
            if entry, err := pm.chaindb.Get(hash.Bytes()); err == nil {
                data = append(data, entry)
                bytes += len(entry)
            }
        }
        return p.SendNodeData(data)

    case p.version >= eth63 && msg.Code == NodeDataMsg:
        // A batch of node state data arrived to one of our previous requests
        var data [][]byte
        if err := msg.Decode(&data); err != nil {
            return errResp(ErrDecode, "msg %v: %v", msg, err)
        }
        // Deliver all to the downloader
        // 数据交给downloader
        if err := pm.downloader.DeliverNodeData(p.id, data); err != nil {
            log.Debug("Failed to deliver node state data", "err", err)
        }

    case p.version >= eth63 && msg.Code == GetReceiptsMsg:
        // 请求收据
        // Decode the retrieval message
        msgStream := rlp.NewStream(msg.Payload, uint64(msg.Size))
        if _, err := msgStream.List(); err != nil {
            return err
        }
        // Gather state data until the fetch or network limits is reached
        var (
            hash     common.Hash
            bytes    int
            receipts []rlp.RawValue
        )
        for bytes < softResponseLimit && len(receipts) < downloader.MaxReceiptFetch {
            // Retrieve the hash of the next block
            if err := msgStream.Decode(&hash); err == rlp.EOL {
                break
            } else if err != nil {
                return errResp(ErrDecode, "msg %v: %v", msg, err)
            }
            // Retrieve the requested block's receipts, skipping if unknown to us
            results := core.GetBlockReceipts(pm.chaindb, hash, core.GetBlockNumber(pm.chaindb, hash))
            if results == nil {
                if header := pm.blockchain.GetHeaderByHash(hash); header == nil || header.ReceiptHash != types.EmptyRootHash {
                    continue
                }
            }
            // If known, encode and queue for response packet
            if encoded, err := rlp.EncodeToBytes(results); err != nil {
                log.Error("Failed to encode receipt", "err", err)
            } else {
                receipts = append(receipts, encoded)
                bytes += len(encoded)
            }
        }
        return p.SendReceiptsRLP(receipts)

    case p.version >= eth63 && msg.Code == ReceiptsMsg:
        // A batch of receipts arrived to one of our previous requests
        var receipts [][]*types.Receipt
        if err := msg.Decode(&receipts); err != nil {
            return errResp(ErrDecode, "msg %v: %v", msg, err)
        }
        // Deliver all to the downloader
        if err := pm.downloader.DeliverReceipts(p.id, receipts); err != nil {
            log.Debug("Failed to deliver receipts", "err", err)
        }

    case msg.Code == NewBlockHashesMsg:
        // 接收到BlockHashesMsg消息
        var announces newBlockHashesData
        if err := msg.Decode(&announces); err != nil {
            return errResp(ErrDecode, "%v: %v", msg, err)
        }
        // Mark the hashes as present at the remote node
        for _, block := range announces {
            p.MarkBlock(block.Hash)
        }
        // Schedule all the unknown hashes for retrieval
        unknown := make(newBlockHashesData, 0, len(announces))
        for _, block := range announces {
            if !pm.blockchain.HasBlock(block.Hash, block.Number) {
                unknown = append(unknown, block)
            }
        }
        for _, block := range unknown {
            // 通知fetcher有一个潜在的block需要下载
            pm.fetcher.Notify(p.id, block.Hash, block.Number, time.Now(), p.RequestOneHeader, p.RequestBodies)
        }

    case msg.Code == NewBlockMsg:
        // Retrieve and decode the propagated block
        var request newBlockData
        if err := msg.Decode(&request); err != nil {
            return errResp(ErrDecode, "%v: %v", msg, err)
        }
        request.Block.ReceivedAt = msg.ReceivedAt
        request.Block.ReceivedFrom = p

        // Mark the peer as owning the block and schedule it for import
        p.MarkBlock(request.Block.Hash())
        pm.fetcher.Enqueue(p.id, request.Block)

        // Assuming the block is importable by the peer, but possibly not yet done so,
        // calculate the head hash and TD that the peer truly must have.
        var (
            trueHead = request.Block.ParentHash()
            trueTD   = new(big.Int).Sub(request.TD, request.Block.Difficulty())
        )
        // Update the peers total difficulty if better than the previous
        if _, td := p.Head(); trueTD.Cmp(td) > 0 {
            // 如果peer的真实的TD和head和我们这边记载的不同, 设置peer真实的head和td,
            p.SetHead(trueHead, trueTD)

            // Schedule a sync if above ours. Note, this will not fire a sync for a gap of
            // a singe block (as the true TD is below the propagated block), however this
            // scenario should easily be covered by the fetcher.
            // 如果真实的TD比我们的TD大,那么请求和这个peer同步。
            currentBlock := pm.blockchain.CurrentBlock()
            if trueTD.Cmp(pm.blockchain.GetTd(currentBlock.Hash(), currentBlock.NumberU64())) > 0 {
                go pm.synchronise(p)
            }
        }

    case msg.Code == TxMsg:
        // Transactions arrived, make sure we have a valid and fresh chain to handle them
        // 交易信息返回。 在我们没用同步完成之前不会接收交易信息。
        if atomic.LoadUint32(&pm.acceptTxs) == 0 {
            break
        }
        // Transactions can be processed, parse all of them and deliver to the pool
        var txs []*types.Transaction
        if err := msg.Decode(&txs); err != nil {
            return errResp(ErrDecode, "msg %v: %v", msg, err)
        }
        for i, tx := range txs {
            // Validate and mark the remote transaction
            if tx == nil {
                return errResp(ErrDecode, "transaction %d is nil", i)
            }
            p.MarkTransaction(tx.Hash())
        }
        // 添加到txpool
        pm.txpool.AddRemotes(txs)

    default:
        return errResp(ErrInvalidMsgCode, "%v", msg.Code)
    }
    return nil
}

几种同步synchronise, 之前发现对方的节点比自己节点要更新的时候会调用这个方法synchronise,

// synchronise tries to sync up our local block chain with a remote peer.
// synchronise 尝试 让本地区块链跟远端同步。
func (pm *ProtocolManager) synchronise(peer *peer) {
    // Short circuit if no peers are available
    if peer == nil {
        return
    }
    // Make sure the peer's TD is higher than our own
    currentBlock := pm.blockchain.CurrentBlock()
    td := pm.blockchain.GetTd(currentBlock.Hash(), currentBlock.NumberU64())

    pHead, pTd := peer.Head()
    if pTd.Cmp(td) <= 0 {
        return
    }
    // Otherwise try to sync with the downloader
    mode := downloader.FullSync
    if atomic.LoadUint32(&pm.fastSync) == 1 { //如果显式申明是fast
        // Fast sync was explicitly requested, and explicitly granted
        mode = downloader.FastSync
    } else if currentBlock.NumberU64() == 0 && pm.blockchain.CurrentFastBlock().NumberU64() > 0 {  //如果数据库是空白的
        // The database seems empty as the current block is the genesis. Yet the fast
        // block is ahead, so fast sync was enabled for this node at a certain point.
        // The only scenario where this can happen is if the user manually (or via a
        // bad block) rolled back a fast sync node below the sync point. In this case
        // however it's safe to reenable fast sync.
        atomic.StoreUint32(&pm.fastSync, 1)
        mode = downloader.FastSync
    }
    // Run the sync cycle, and disable fast sync if we've went past the pivot block
    err := pm.downloader.Synchronise(peer.id, pHead, pTd, mode)

    if atomic.LoadUint32(&pm.fastSync) == 1 {
        // Disable fast sync if we indeed have something in our chain
        if pm.blockchain.CurrentBlock().NumberU64() > 0 {
            log.Info("Fast sync complete, auto disabling")
            atomic.StoreUint32(&pm.fastSync, 0)
        }
    }
    if err != nil {
        return
    }
    atomic.StoreUint32(&pm.acceptTxs, 1) // Mark initial sync done
    // 同步完成 开始接收交易。
    if head := pm.blockchain.CurrentBlock(); head.NumberU64() > 0 {
        // We've completed a sync cycle, notify all peers of new state. This path is
        // essential in star-topology networks where a gateway node needs to notify
        // all its out-of-date peers of the availability of a new block. This failure
        // scenario will most often crop up in private and hackathon networks with
        // degenerate connectivity, but it should be healthy for the mainnet too to
        // more reliably update peers or the local TD state.
        // 我们告诉所有的peer我们的状态。
        go pm.BroadcastBlock(head, false)
    }
}

交易广播。txBroadcastLoop 在start的时候启动的goroutine。 txCh在txpool接收到一条合法的交易的时候会往这个上面写入事件。 然后把交易广播给所有的peers

func (self *ProtocolManager) txBroadcastLoop() {
    for {
        select {
        case event := <-self.txCh:
            self.BroadcastTx(event.Tx.Hash(), event.Tx)

        // Err() channel will be closed when unsubscribing.
        case <-self.txSub.Err():
            return
        }
    }
}

挖矿广播。当收到订阅的事件的时候把新挖到的矿广播出去。

// Mined broadcast loop
func (self *ProtocolManager) minedBroadcastLoop() {
    // automatically stops if unsubscribe
    for obj := range self.minedBlockSub.Chan() {
        switch ev := obj.Data.(type) {
        case core.NewMinedBlockEvent:
            self.BroadcastBlock(ev.Block, true)  // First propagate block to peers
            self.BroadcastBlock(ev.Block, false) // Only then announce to the rest
        }
    }
}

syncer负责定期和网络同步,

// syncer is responsible for periodically synchronising with the network, both
// downloading hashes and blocks as well as handling the announcement handler.
//同步器负责周期性地与网络同步,下载散列和块以及处理通知处理程序。
func (pm *ProtocolManager) syncer() {
    // Start and ensure cleanup of sync mechanisms
    pm.fetcher.Start()
    defer pm.fetcher.Stop()
    defer pm.downloader.Terminate()

    // Wait for different events to fire synchronisation operations
    forceSync := time.NewTicker(forceSyncCycle)
    defer forceSync.Stop()

    for {
        select {
        case <-pm.newPeerCh: //当有新的Peer增加的时候 会同步。 这个时候还可能触发区块广播。
            // Make sure we have peers to select from, then sync
            if pm.peers.Len() < minDesiredPeerCount {
                break
            }
            go pm.synchronise(pm.peers.BestPeer())

        case <-forceSync.C:
            // 定时触发 10秒一次
            // Force a sync even if not enough peers are present
            // BestPeer() 选择总难度最大的节点。
            go pm.synchronise(pm.peers.BestPeer())

        case <-pm.noMorePeers: // 退出信号
            return
        }
    }
}

txsyncLoop负责把pending的交易发送给新建立的连接。

// txsyncLoop takes care of the initial transaction sync for each new
// connection. When a new peer appears, we relay all currently pending
// transactions. In order to minimise egress bandwidth usage, we send
// the transactions in small packs to one peer at a time.

txsyncLoop负责每个新连接的初始事务同步。 当新的对等体出现时,我们转发所有当前待处理的事务。 为了最小化出口带宽使用,我们一次将一个小包中的事务发送给一个对等体。
func (pm *ProtocolManager) txsyncLoop() {
    var (
        pending = make(map[discover.NodeID]*txsync)
        sending = false               // whether a send is active
        pack    = new(txsync)         // the pack that is being sent
        done    = make(chan error, 1) // result of the send
    )

    // send starts a sending a pack of transactions from the sync.
    send := func(s *txsync) {
        // Fill pack with transactions up to the target size.
        size := common.StorageSize(0)
        pack.p = s.p
        pack.txs = pack.txs[:0]
        for i := 0; i < len(s.txs) && size < txsyncPackSize; i++ {
            pack.txs = append(pack.txs, s.txs[i])
            size += s.txs[i].Size()
        }
        // Remove the transactions that will be sent.
        s.txs = s.txs[:copy(s.txs, s.txs[len(pack.txs):])]
        if len(s.txs) == 0 {
            delete(pending, s.p.ID())
        }
        // Send the pack in the background.
        s.p.Log().Trace("Sending batch of transactions", "count", len(pack.txs), "bytes", size)
        sending = true
        go func() { done <- pack.p.SendTransactions(pack.txs) }()
    }

    // pick chooses the next pending sync.
    // 随机挑选一个txsync来发送。
    pick := func() *txsync {
        if len(pending) == 0 {
            return nil
        }
        n := rand.Intn(len(pending)) + 1
        for _, s := range pending {
            if n--; n == 0 {
                return s
            }
        }
        return nil
    }

    for {
        select {
        case s := <-pm.txsyncCh: //从这里接收txsyncCh消息。
            pending[s.p.ID()] = s
            if !sending {
                send(s)
            }
        case err := <-done:
            sending = false
            // Stop tracking peers that cause send failures.
            if err != nil {
                pack.p.Log().Debug("Transaction send failed", "err", err)
                delete(pending, pack.p.ID())
            }
            // Schedule the next send.
            if s := pick(); s != nil {
                send(s)
            }
        case <-pm.quitSync:
            return
        }
    }
}

txsyncCh队列的生产者,syncTransactions是在handle方法里面调用的。 在新链接刚刚创建的时候会被调用一次。

// syncTransactions starts sending all currently pending transactions to the given peer.
func (pm *ProtocolManager) syncTransactions(p *peer) {
    var txs types.Transactions
    pending, _ := pm.txpool.Pending()
    for _, batch := range pending {
        txs = append(txs, batch...)
    }
    if len(txs) == 0 {
        return
    }
    select {
    case pm.txsyncCh <- &txsync{p, txs}:
    case <-pm.quitSync:
    }
}

总结一下。 我们现在的一些大的流程。

区块同步

  1. 如果是自己挖的矿。通过goroutine minedBroadcastLoop()来进行广播。
  2. 如果是接收到其他人的区块广播,(NewBlockHashesMsg/NewBlockMsg),是否fetcher会通知的peer? TODO
  3. goroutine syncer()中会定时的同BestPeer()来同步信息。

交易同步

  1. 新建立连接。 把pending的交易发送给他。
  2. 本地发送了一个交易,或者是接收到别人发来的交易信息。 txpool会产生一条消息,消息被传递到txCh通道。 然后被goroutine txBroadcastLoop()处理, 发送给其他不知道这个交易的peer。

猜你喜欢

转载自blog.csdn.net/boss2967/article/details/84259140