第十七讲 利用傅里叶级数求特解

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_23940575/article/details/84178173

一,几何变换法,求傅里叶级数:

  • 假设f(t_{2})是周期T=2LL=1的函数,求它的傅里叶级数。如图1:
  • 第一步,求周期T=2\pi的函数g(t_{1})的傅里叶级数。如图2:
  • 因为g(t_{1})是奇函数,g(t_{1})=\sum_{n=1}^{\infty }b_{n}sin(nt_{1})
  • b_{n}=\frac{2}{\pi }\int_{0}^{\pi }g(t_{1})sin(nt_{1})dt_{1}=\frac{2}{\pi }\int_{0}^{\pi }sin(nt_{1})dt_{1}=\frac{2}{\pi }\int_{0}^{\pi }\frac{sin(nt_{1})}{n}dnt_{1}=\frac{2}{\pi }\cdot \left. [\frac{-cos(nt_{1})}{n}] \right |^{\pi }_{0}=\frac{2}{\pi }\cdot\frac{1-(-1)^{n}}{n}
  • n=1,3,5......b_{n}=\frac{4}{\pi n};当n=2,4,6......b_{n}=0
  • 因此g(t_{1})=\sum_{n=1}^{\infty }b_{n}sin(nt_{1})=\frac{4}{\pi }\sum_{n=1}^{\infty }\frac{sin(nt_{1})}{n},前提:n=1,3,5......
  • 第二步,将g(t_{1})压缩成s(t_{2}),周期改变,t_{1}t_{2},如图3:
  • s(t_{2})的周期T=2L=1,振幅是g(t_{1})的一半:s(t_{2})=\frac{1}{2}g(t_{1})
  • 基频率k_{0}=\frac{2\pi }{T}=\pit_{1}=k_{0}t_{2}=\pi t_{2}
  • \pi t_{2}替换t_{1}s(t_{2})=\frac{1}{2}g(t_{1})=\frac{1}{2}\cdot\frac{4}{\pi }\sum_{n=1}^{\infty }\frac{sin(nt_{1})}{n}=\frac{2}{\pi }\sum_{n=1}^{\infty }\frac{sin(n\pi t_{2})}{n},前提:n=1,3,5......
  • 用上一节拓展1的公式验证答案:
  1. 因为s(t_{2})是奇函数,s(t_{2})=\sum_{n=1}^{\infty }b_{n}sin(nk_{0}t_{2})=\sum_{n=1}^{\infty }b_{n}sin(n\pi t_{2})
  2. b_{n}=\frac{2}{L}\int_{0}^{L}s(t_{2})sin(nk_{0}t_{2})dt_{2}=2\int_{0}^{1}\frac{1}{2}sin(n\pi t_{2})dt_{2}=\int_{0}^{1}\frac{1}{n\pi }sin(n\pi t_{2})dn\pi t_{2}=-\frac{1}{n\pi }\cdot \left. cos(n\pi t_{2}) \right |^{1}_{0}=\frac{1-(-1)^{n}}{n\pi }
  3. n=1,3,5......b_{n}=\frac{2}{n\pi };当n=2,4,6......b_{n}=0
  4. 因此s(t_{2})=\sum_{n=1}^{\infty }b_{n}sin(n\pi t_{2})=\frac{2}{\pi }\sum_{n=1}^{\infty }\frac{sin(n\pi t_{2})}{n},前提:n=1,3,5......
  • 第三步,将图3上移1/2变成图1,周期没变,t不变:
  • f(t_{2})=\frac{1}{2}+s(t_{2})=\frac{1}{2}+\frac{2}{\pi }\sum_{n=1}^{\infty }\frac{sin(n\pi t_{2})}{n},前提:n=1,3,5......

二,二阶非齐次常系数线性ODE的输入项为s(t_{2}),求特解x_{p}

  • 弹簧—质量—阻尼系统

  • 如图
  • 标准形式:{x}''+\frac{c}{m}{x}'+\frac{k}{m}x=s(t_{2})
  • 设阻尼系数c=0,弹性常数\frac{k}{m}=\omega _{0}^{2}\omega _{0}表示弹簧振荡的角速度,\omega _{0}>0
  • 原方程化为:{x}''+\omega _{0}^{2}x=s(t_{2})
  • 不考虑奇偶性,s(t_{2})的周期T=2L,基频率k_{0}=\frac{2\pi }{T}=2\pi k
  • s(t_{2})=\frac{a_{0}}{2}+\sum_{n=1}^{\infty }[a_{n}cos(nk_{0}t_{2})+b_{n}sin(nk_{0}t_{2})],角速度\omega _{2}=nk_{0}

  • 原方程化为:{x}''+\omega _{0}^{2}x=\frac{a_{0}}{2}+\sum_{n=1}^{\infty }[a_{n}cos(\omega _{2}t_{2})+b_{n}sin(\omega _{2}t_{2})]

  • 复习第十四讲 共振

    当驱动项f(t)=cos(\omega _{2}t)或者sin(\omega _{2}t)时:

    特解x_{p}=\frac{1}{\omega_{0} ^{2}-\omega _{2}^{2}}\cdot cos(\omega _{2}t)或者\frac{1}{\omega_{0} ^{2}-\omega _{2}^{2}}\cdot sin(\omega _{2}t)

    当驱动角速度\omega _{2}逼近弹簧角速度\omega _{0}时,产生共振

  • 叠加原理:x_{p}=\frac{a_{0}}{2\omega _{0}^{2}}+\sum_{n=1}^{\infty }[\frac{a_{n}cos(\omega _{2}t_{2})}{\omega _{0}^{2}-\omega _{2}^{2}}+\frac{b_{n}sin(\omega _{2}t_{2})}{\omega _{0}^{2}-\omega _{2}^{2}}]

  • 第一项:当\omega _{2}=0时,\frac{a_{0}}{2(\omega _{0}^{2}-\omega _{2}^{2})}=\frac{a_{0}}{2\omega _{0}^{2}}

三,假设输入项为f(t_{2}),求特解x_{p}

  • f(t_{2})是奇函数,周期T=2f(t_{2})=\frac{1}{2}+\frac{2}{\pi }\sum_{n=1}^{\infty }\frac{sin(n\pi t_{2})}{n},前提:n=1,3,5......,角速度\omega _{2}=n\pi
  • 原方程化为:{x}''+\omega _{0}^{2}x=\frac{1}{2}+\frac{2}{\pi }\sum_{n=1}^{\infty }\frac{sin(\omega _{2}t_{2})}{n}
  • 叠加原理:x_{p}=\frac{1}{2\omega _{0}^{2}}+\frac{2}{\pi }\sum_{n=1}^{\infty }\frac{sin(\omega _{2}t_{2})}{n(\omega _{0}^{2}-\omega _{2}^{2})},前提:n=1,3,5......

四,分析x_{p}系数的大小:

  • 假设:\omega _{0}=10k_{0}=\pi =3
  • 已知:\omega _{2}=nk_{0}=n\pi =3nn=1,3,5......
  • x_{p}=\frac{1}{2\omega _{0}^{2}}+\frac{2}{\pi }\sum_{n=1}^{\infty }\frac{sin(\omega _{2}t_{2})}{n(\omega _{0}^{2}-\omega _{2}^{2})}\approx \frac{1}{200}+\frac{2}{3}(\frac{sin(3t_{2})}{91}+\frac{sin(9t_{2})}{57}+\frac{sin(15t_{2})}{-625}+......)\approx 0.005+0.007sin(3t_{2})+0.012sin(9t_{2})-0.001sin(15t_{2})-......
  • 傅里叶系数表示某个角速度的波sin(\omega _{2}t_{2})在合成波f(t_{2})中占的比重
  • 可以看到响应幅值最大的是角速度\omega _{2}=3\pi
  • 结论:当\omega _{0}=10时,近似的共振将会由输入项f(t_{2})中的角速度\omega _{2}=3\pi的波产生
  • 原理:响应项不会对输入项里所有的波做出响应,它只会选出和它的角速度\omega _{0}接近(3\pi \approx 10)的波进行响应,其他的波都被淡化了。
  • 声音在不同介质中的传递,是通过共振实现的。

五,待定系数法,求特解x_{p}

  • 假设输入项为f(t_{2})=\frac{1}{2}+\frac{2}{\pi }\sum_{n=1}^{\infty }\frac{sin(\omega _{2}t_{2})}{n}
  • 假设响应项x_{p}具有相同的形式:x_{p}=c_{0}+\sum_{n=1}^{\infty }c_{n}\cdot sin(\omega _{2}t_{2})c_{0}c_{n}为待定系数
  • {x_{p}}''=-\omega _{2}^{2}\sum_{n=1}^{\infty }c_{n}\cdot sin(\omega _{2}t_{2})
  • 原方程为:{x}''+\omega _{0}^{2}x=\frac{1}{2}+\frac{2}{\pi }\sum_{n=1}^{\infty }\frac{sin(\omega _{2}t_{2})}{n}
  • x_{p}{x_{p}}''代入原方程:
  • -\omega _{2}^{2}\sum_{n=1}^{\infty }c_{n}\cdot sin(\omega _{2}t_{2})+\omega _{0}^{2}c_{0}+\omega _{0}^{2}\sum_{n=1}^{\infty }c_{n}\cdot sin(\omega _{2}t_{2})=\frac{1}{2}+\frac{2}{\pi }\sum_{n=1}^{\infty }\frac{sin(\omega _{2}t_{2})}{n}
  • \omega _{0}^{2}c_{0}=\frac{1}{2}\Rightarrow c_{0}=\frac{1}{2\omega _{0}^{2}}
  • (\omega _{0}^{2}-\omega _{2}^{2})\sum_{n=1}^{\infty }c_{n}\cdot sin(\omega _{2}t_{2})=\frac{2}{\pi }\sum_{n=1}^{\infty }\frac{sin(\omega _{2}t_{2})}{n}\Rightarrow (\omega _{0}^{2}-\omega _{2}^{2})c_{n}=\frac{2}{n\pi }\Rightarrow c_{n}=\frac{2}{n\pi (\omega _{0}^{2}-\omega _{2}^{2})}
  • 将系数c_{0}c_{n}代入响应项x_{p}
  • x_{p}=\frac{1}{2\omega _{0}^{2}}+\frac{2}{\pi }\sum_{n=1}^{\infty }\frac{sin(\omega _{2}t_{2})}{n(\omega _{0}^{2}-\omega _{2}^{2})}

猜你喜欢

转载自blog.csdn.net/qq_23940575/article/details/84178173
今日推荐