51nod1222 最小公倍数计数 【莫比乌斯反演】

版权声明:本文为博主原创文章,未经博主允许必须转载。 https://blog.csdn.net/C20181220_xiang_m_y/article/details/85037691

题目描述

f ( n ) = ( l c m ( x , y ) = = n ( x < = y ) ) f(n)=\left(lcm(x,y)==n的二元组(x<=y)的数量\right)
i = a b f ( i ) \sum_{i=a}^bf(i)
1 a b 1 0 11 1\le a\le b\le10^{11}

题目分析

实质上就是求 i j l c m ( i , j ) n \sum_i\sum_jlcm(i,j)\le n 的数量,最后加上n,再除以2
看到这种条件里面带不等式的,求和符号能省去范围的就省掉,不然会很冗杂
枚举gcd:
= d = 1 n i j [ ( i , j ) = = 1 ] [ i j d < = n ] =\sum_{d=1}^n\sum_i\sum_j[(i,j)==1][ijd<=n]
反演,去掉[(i,j)==1]:
= k = 1 n μ ( k ) d i j [ i j d < = n k 2 ] =\sum_{k=1}^{\sqrt n}\mu(k)\sum_d\sum_i\sum_j\left[ijd<=\lfloor\frac n{k^2}\rfloor\right]
那么现在就是求 g ( n ) = a b c [ a b c < = n ] g(n)=\sum_a\sum_b\sum_c[abc<=n]

假设 a < = b < = c a<=b<=c ,那么只需要枚举不超过 n 1 3 \large n^{\frac 13} a a ,再枚举不超过 n a \large\sqrt{\frac na} b b ,统计c的个数,在配上对应的容斥系数,考虑一下两个数,三个数相等的情况即可。
g ( n ) g(n) 的时间复杂度为 i = 1 n 1 3 ( n i i ) \sum_{i=1}^{n^{\frac 13}}(\sqrt{\frac ni}-i) O ( n 2 3 ) O(n^{\frac 23})

  • PS:
    枚举 l c m lcm ,原式 = i = 1 n x i y i [ ( x , y ) = = 1 ] = i = 1 n σ 0 ( i 2 ) =\sum_{i=1}^n\sum_{x|i}\sum_{y|i}[(x,y)==1]\\=\sum_{i=1}^n\sigma_0(i^2)
    问题等同于Counting Divisors
#include<cstdio>
#define LL long long
const int N = 10000005;
int p[N/10],mu[N+5];
bool v[N+5];
void Prime()
{
	mu[1]=1;int cnt=0;
	for(int i=2;i<=N;i++)
	{
		if(!v[i]) p[++cnt]=i,mu[i]=-1;
		for(int j=1,k;j<=cnt&&p[j]*i<=N;j++)
		{
			v[k=p[j]*i]=1;
			if(i%p[j]==0) {mu[k]=0;break;}
			mu[k]=-mu[i];
		}
	}
}
LL solve(LL n)
{
	LL ans=0;
	for(LL k=1;k*k<=n;k++) if(mu[k])
	{
		LL m = n/(k*k), ret=0;
		for(LL i=1;i*i*i<=m;i++)
		{
			for(LL j=i+1;i*j*j<=m;j++) ret+=(m/(i*j)-j)*6+3;
			ret+=(m/(i*i)-i)*3+1;
		}
		ans+=mu[k]*ret;
	}
	return (ans+n)/2;
}
int main()
{
	Prime();
	LL a,b;
	scanf("%lld%lld",&a,&b);
	printf("%lld",solve(b)-solve(a-1));
}

猜你喜欢

转载自blog.csdn.net/C20181220_xiang_m_y/article/details/85037691