小型功率放大器的设计与制作

功率放大器设计的关键点是避免温度变化对电路造成的影响,这里结合共射级电路和共集电极电路的使用,设计简单的功率放大电路!

一.功率放大电路的计算

1.计算及分析方法

(1)甲类功率放大器:

最大不失真幅值电压:

最大输出不失真功率:

电源供给的功率:

则电路的效率为:

(2)乙类双电源互补推挽功率放大电路OCL

最大输出不失真功率:

当考虑饱和压降VCES时,输出电压的最大值为:

电压利用系数:

此时,

(3)乙类单电源互补推挽功率放大电路OTL

和上面的计算方法是一样的,直接用Vcc的一半代替Vcc即可。

(4)功率管选型满足的条件:

2.实用功率放大电路的设计

上篇文章总结了简单的推挽式功率放大电路,但是因为其交越失真的存在,不能被广泛的使用,进而,我们提出了改进的方法,在偏置电路中二极管,来饱和三极管导通压降Vbe,并实际仿真改进电路,得到了较好的结果。在实际使用中,克服交越失真后的电路还存另外一个缺点---热击穿。热击穿现象的存在使得我们设计的功率放大器不能够长时间使用。因此,需要考虑对上面的电路进行改进和修正,使用晶体管进行热耦合可以很方便的解决此问题。

3.实际应用电路分析及选型

 

  1. 电源:大于最大输出电压,且将电源电压提高Vce(sat)处理。
  2. 晶体管选型:根据最大输出电流确定静态工作电流Ie,且使Ie大于最大输出电流。Vcb和Vceo大于电源的值。确定Ie;
  3. 功耗计算:Pc=Vce*Ie<Pcm;查阅datasheet可确定最大工作温度,决定是否应该加散热片。判断Ie合理性;
  4. 基极偏置电压一般设计为1/2Vcc,Ve=0.6+1/2Vcc,确定Ve和Re;
  5. 在基极偏置电路中,假设Hfe为200,且一般假设流动电流为基极电流的10倍左右,故可确定R1和R2的具体值。R1=R2;
  6. 电容的确定,耦合电容构成高通滤波器,决定截止频率,根据实际电路确定其值 的大小;输入输出同相输入阻抗高易构成震荡,去耦电容的添加很关键。

2.射极跟随器的性能

(1)输入电阻的测量方法,输入端串联电阻Rs,上面电路测量的输入电阻为两个偏置电阻并联的值。

(2)输出电阻的测量方法,输出端接负载RL与没有负载时的电压关系。上面电路测得的输出阻抗为0;

(3)负载加重的情况:

Re和Rl并联,射级电流不变,不允许输出的电压比(Re//Rl)*Ie小,否则下面部分会被截断,设计时,空载电流需要大于最大输出电流。

 

具体的解决方案是:推挽型射级跟随器

猜你喜欢

转载自www.cnblogs.com/faithyiyo/p/10232663.html