各种排序方法c

排序算法可分为两类:一种是比较排序,时间复杂度O(nlogn)~O(n^2)主要有:冒泡排序,选择排序,插入排序,归并排序,堆排序,快速排序等。

另一种是非比较排序,时间复杂度O(n),主要有计数排序,基数排序,桶排序 等。

排序算法

冒泡排序

冒泡排序是一种极其简单的排序算法,也是我所学的第一个排序算法。它重复地走访过要排序的元素,依次比较相邻两个元素,如果他们的顺序错误就把他们调换过来,直到没有元素再需要交换,排序完成。这个算法的名字由来是因为越小(或越大)的元素会经由交换慢慢“浮”到数列的顶端。

冒泡排序算法的运作如下:

  1. 比较相邻的元素,如果前一个比后一个大,就把它们两个调换位置。

  2. 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。

  3. 针对所有的元素重复以上的步骤,除了最后一个。

  4. 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

    #include <stdio.h>
    
    // 分类 -------------- 内部比较排序
    // 数据结构 ---------- 数组
    // 最差时间复杂度 ---- O(n^2)
    // 最优时间复杂度 ---- 如果能在内部循环第一次运行时,使用一个旗标来表示有无需要交换的可能,可以把最优时间复杂度降低到O(n)
    // 平均时间复杂度 ---- O(n^2)
    // 所需辅助空间 ------ O(1)
    // 稳定性 ------------ 稳定
    
    void Swap(int A[], int i, int j)
    {
        int temp = A[i];
        A[i] = A[j];
        A[j] = temp;
    }
    
    void BubbleSort(int A[], int n)
    {
        for (int j = 0; j < n - 1; j++)         // 每次最大元素就像气泡一样"浮"到数组的最后
        {
            for (int i = 0; i < n - 1 - j; i++) // 依次比较相邻的两个元素,使较大的那个向后移
            {
                if (A[i] > A[i + 1])            // 如果条件改成A[i] >= A[i + 1],则变为不稳定的排序算法
                {
                    Swap(A, i, i + 1);
                }
            }
        }
    }
    
    int main()
    {
        int A[] = { 6, 5, 3, 1, 8, 7, 2, 4 };    // 从小到大冒泡排序
        int n = sizeof(A) / sizeof(int);
        BubbleSort(A, n);
        printf("冒泡排序结果:");
        for (int i = 0; i < n; i++)
        {
            printf("%d ", A[i]);
        }
        printf("\n");
        return 0;
    }

冒泡排序的改进:鸡尾酒排序,又叫定向冒泡排序,鸡尾酒排序。此算法与冒泡排序的不同处在于从低到高然后从高到低,而冒泡排序则仅从低到高去比较序列里的每个元素。他可以得到比冒泡排序稍微好一点的效能。以序列(2,3,4,5,1)为例,鸡尾酒排序只需要访问一次序列就可以完成排序,但如果使用冒泡排序则需要四次。但是在乱数序列的状态下,鸡尾酒排序与冒泡排序的效率都很差劲。

#include <stdio.h>

// 分类 -------------- 内部比较排序
// 数据结构 ---------- 数组
// 最差时间复杂度 ---- O(n^2)
// 最优时间复杂度 ---- 如果序列在一开始已经大部分排序过的话,会接近O(n)
// 平均时间复杂度 ---- O(n^2)
// 所需辅助空间 ------ O(1)
// 稳定性 ------------ 稳定

void Swap(int A[], int i, int j)
{
    int temp = A[i];
    A[i] = A[j];
    A[j] = temp;
}

void CocktailSort(int A[], int n)
{
    int left = 0;                            // 初始化边界
    int right = n - 1;
    while (left < right)
    {
        for (int i = left; i < right; i++)   // 前半轮,将最大元素放到后面
        {
            if (A[i] > A[i + 1])
            {
                Swap(A, i, i + 1);
            }
        }
        right--;
        for (int i = right; i > left; i--)   // 后半轮,将最小元素放到前面
        {
            if (A[i - 1] > A[i])
            {
                Swap(A, i - 1, i);
            }
        }
        left++;
    }
}

int main()
{
    int A[] = { 6, 5, 3, 1, 8, 7, 2, 4 };   // 从小到大定向冒泡排序
    int n = sizeof(A) / sizeof(int);
    CocktailSort(A, n);
    printf("鸡尾酒排序结果:");
    for (int i = 0; i < n; i++)
    {
        printf("%d ", A[i]);
    }
    printf("\n");
    return 0;
}

选择排序

对于N个无序数,第一轮将N个元素中最小(大)的元素与第一个元素交换,第二轮将除第一个的剩下的N-1个元素中最小(大)的元素与第二个元素交换……第N-1轮将最后剩下的2个元素中的最小(大)的元素与第N-1个元素交换。即完成选择排序。

#include <stdio.h>

// 分类 -------------- 内部比较排序
// 数据结构 ---------- 数组
// 最差时间复杂度 ---- O(n^2)
// 最优时间复杂度 ---- O(n^2)
// 平均时间复杂度 ---- O(n^2)
// 所需辅助空间 ------ O(1)
// 稳定性 ------------ 不稳定

void Swap(int A[], int i, int j)
{
    int temp = A[i];
    A[i] = A[j];
    A[j] = temp;
}

void SelectionSort(int A[], int n)
{
    for (int i = 0; i < n - 1; i++)         // i为已排序序列的末尾
    {
        int min = i;
        for (int j = i + 1; j < n; j++)     // 未排序序列
        {
            if (A[j] < A[min])              // 找出未排序序列中的最小值
            {
                min = j;
            }
        }
        if (min != i)
        {
            Swap(A, min, i);    // 放到已排序序列的末尾,该操作很有可能把稳定性打乱,所以选择排序是不稳定的排序算法
        }
    }
}

int main()
{
    int A[] = { 8, 5, 2, 6, 9, 3, 1, 4, 0, 7 }; // 从小到大选择排序
    int n = sizeof(A) / sizeof(int);
    SelectionSort(A, n);
    printf("选择排序结果:");
    for (int i = 0; i < n; i++)
    {
        printf("%d ", A[i]);
    }
    printf("\n");
    return 0;
}

插入排序

插入排序是一种简单直观的排序算法。它的工作原理非常类似于我们抓扑克牌。

对于未排序数据(右手抓到的牌),在已排序序列(左手已经排好序的手牌)中从后向前扫描,找到相应位置并插入。

插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。

#include <stdio.h>

// 分类 ------------- 内部比较排序
// 数据结构 ---------- 数组
// 最差时间复杂度 ---- 最坏情况为输入序列是降序排列的,此时时间复杂度O(n^2)
// 最优时间复杂度 ---- 最好情况为输入序列是升序排列的,此时时间复杂度O(n)
// 平均时间复杂度 ---- O(n^2)
// 所需辅助空间 ------ O(1)
// 稳定性 ------------ 稳定

void InsertionSort(int A[], int n)
{
    for (int i = 1; i < n; i++)         // 类似抓扑克牌排序
    {
        int get = A[i];                 // 右手抓到一张扑克牌
        int j = i - 1;                  // 拿在左手上的牌总是排序好的
        while (j >= 0 && A[j] > get)    // 将抓到的牌与手牌从右向左进行比较
        {
            A[j + 1] = A[j];            // 如果该手牌比抓到的牌大,就将其右移
            j--;
        }
        A[j + 1] = get; // 直到该手牌比抓到的牌小(或二者相等),将抓到的牌插入到该手牌右边(相等元素的相对次序未变,所以插入排序是稳定的)
    }
}

int main()
{
    int A[] = { 6, 5, 3, 1, 8, 7, 2, 4 };// 从小到大插入排序
    int n = sizeof(A) / sizeof(int);
    InsertionSort(A, n);
    printf("插入排序结果:");
    for (int i = 0; i < n; i++)
    {
        printf("%d ", A[i]);
    }
    printf("\n");
    return 0;
}

插入排序的改进:二分插入排序

#include <stdio.h>

// 分类 -------------- 内部比较排序
// 数据结构 ---------- 数组
// 最差时间复杂度 ---- O(n^2)
// 最优时间复杂度 ---- O(nlogn)
// 平均时间复杂度 ---- O(n^2)
// 所需辅助空间 ------ O(1)
// 稳定性 ------------ 稳定

void InsertionSortDichotomy(int A[], int n)
{
    for (int i = 1; i < n; i++)
    {
        int get = A[i];                    // 右手抓到一张扑克牌
        int left = 0;                    // 拿在左手上的牌总是排序好的,所以可以用二分法
        int right = i - 1;                // 手牌左右边界进行初始化
        while (left <= right)            // 采用二分法定位新牌的位置
        {
            int mid = (left + right) / 2;
            if (A[mid] > get)
                right = mid - 1;
            else
                left = mid + 1;
        }
        for (int j = i - 1; j >= left; j--)    // 将欲插入新牌位置右边的牌整体向右移动一个单位
        {
            A[j + 1] = A[j];
        }
        A[left] = get;                    // 将抓到的牌插入手牌
    }
}


int main()
{
    int A[] = { 5, 2, 9, 4, 7, 6, 1, 3, 8 };// 从小到大二分插入排序
    int n = sizeof(A) / sizeof(int);
    InsertionSortDichotomy(A, n);
    printf("二分插入排序结果:");
    for (int i = 0; i < n; i++)
    {
        printf("%d ", A[i]);
    }
    printf("\n");
    return 0;
}

希尔排序

#include <stdio.h>  

// 分类 -------------- 内部比较排序
// 数据结构 ---------- 数组
// 最差时间复杂度 ---- 根据步长序列的不同而不同。已知最好的为O(n(logn)^2)
// 最优时间复杂度 ---- O(n)
// 平均时间复杂度 ---- 根据步长序列的不同而不同。
// 所需辅助空间 ------ O(1)
// 稳定性 ------------ 不稳定

void ShellSort(int A[], int n)
{
    int h = 0;
    while (h <= n)                          // 生成初始增量
    {
        h = 3 * h + 1;
    }
    while (h >= 1)
    {
        for (int i = h; i < n; i++)
        {
            int j = i - h;
            int get = A[i];
            while (j >= 0 && A[j] > get)
            {
                A[j + h] = A[j];
                j = j - h;
            }
            A[j + h] = get;
        }
        h = (h - 1) / 3;                    // 递减增量
    }
}

int main()
{
    int A[] = { 5, 2, 9, 4, 7, 6, 1, 3, 8 };// 从小到大希尔排序
    int n = sizeof(A) / sizeof(int);
    ShellSort(A, n);
    printf("希尔排序结果:");
    for (int i = 0; i < n; i++)
    {
        printf("%d ", A[i]);
    }
    printf("\n");
    return 0;
}

归并排序

归并排序是创建在归并操作上的一种有效的排序算法,效率为O(nlogn),1945年由冯·诺伊曼首次提出。

  归并排序的实现分为递归实现非递归(迭代)实现。递归实现的归并排序是算法设计中分治策略的典型应用,我们将一个大问题分割成小问题分别解决,然后用所有小问题的答案来解决整个大问题。非递归(迭代)实现的归并排序首先进行是两两归并,然后四四归并,然后是八八归并,一直下去直到归并了整个数组。

  归并排序算法主要依赖归并(Merge)操作。归并操作指的是将两个已经排序的序列合并成一个序列的操作,归并操作步骤如下:

  1. 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列
  2. 设定两个指针,最初位置分别为两个已经排序序列的起始位置
  3. 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置
  4. 重复步骤3直到某一指针到达序列尾
  5. 将另一序列剩下的所有元素直接复制到合并序列尾

  归并排序的代码如下:

#include <stdio.h>
#include <limits.h>

// 分类 -------------- 内部比较排序
// 数据结构 ---------- 数组
// 最差时间复杂度 ---- O(nlogn)
// 最优时间复杂度 ---- O(nlogn)
// 平均时间复杂度 ---- O(nlogn)
// 所需辅助空间 ------ O(n)
// 稳定性 ------------ 稳定


void Merge(int A[], int left, int mid, int right)// 合并两个已排好序的数组A[left...mid]和A[mid+1...right]
{
    int len = right - left + 1;
    int *temp = new int[len];       // 辅助空间O(n)
    int index = 0;
    int i = left;                   // 前一数组的起始元素
    int j = mid + 1;                // 后一数组的起始元素
    while (i <= mid && j <= right)
    {
        temp[index++] = A[i] <= A[j] ? A[i++] : A[j++];  // 带等号保证归并排序的稳定性
    }
    while (i <= mid)
    {
        temp[index++] = A[i++];
    }
    while (j <= right)
    {
        temp[index++] = A[j++];
    }
    for (int k = 0; k < len; k++)
    {
        A[left++] = temp[k];
    }
}

void MergeSortRecursion(int A[], int left, int right)    // 递归实现的归并排序(自顶向下)
{
    if (left == right)    // 当待排序的序列长度为1时,递归开始回溯,进行merge操作
        return;
    int mid = (left + right) / 2;
    MergeSortRecursion(A, left, mid);
    MergeSortRecursion(A, mid + 1, right);
    Merge(A, left, mid, right);
}

void MergeSortIteration(int A[], int len)    // 非递归(迭代)实现的归并排序(自底向上)
{
    int left, mid, right;// 子数组索引,前一个为A[left...mid],后一个子数组为A[mid+1...right]
    for (int i = 1; i < len; i *= 2)        // 子数组的大小i初始为1,每轮翻倍
    {
        left = 0;
        while (left + i < len)              // 后一个子数组存在(需要归并)
        {
            mid = left + i - 1;
            right = mid + i < len ? mid + i : len - 1;// 后一个子数组大小可能不够
            Merge(A, left, mid, right);
            left = right + 1;               // 前一个子数组索引向后移动
        }
    }
}

int main()
{
    int A1[] = { 6, 5, 3, 1, 8, 7, 2, 4 };      // 从小到大归并排序
    int A2[] = { 6, 5, 3, 1, 8, 7, 2, 4 };
    int n1 = sizeof(A1) / sizeof(int);
    int n2 = sizeof(A2) / sizeof(int);
    MergeSortRecursion(A1, 0, n1 - 1);          // 递归实现
    MergeSortIteration(A2, n2);                 // 非递归实现
    printf("递归实现的归并排序结果:");
    for (int i = 0; i < n1; i++)
    {
        printf("%d ", A1[i]);
    }
    printf("\n");
    printf("非递归实现的归并排序结果:");
    for (int i = 0; i < n2; i++)
    {
        printf("%d ", A2[i]);
    }
    printf("\n");
    return 0;
}

堆排序

#include <stdio.h>

// 分类 -------------- 内部比较排序
// 数据结构 ---------- 数组
// 最差时间复杂度 ---- O(nlogn)
// 最优时间复杂度 ---- O(nlogn)
// 平均时间复杂度 ---- O(nlogn)
// 所需辅助空间 ------ O(1)
// 稳定性 ------------ 不稳定


void Swap(int A[], int i, int j)
{
    int temp = A[i];
    A[i] = A[j];
    A[j] = temp;
}

void Heapify(int A[], int i, int size)  // 从A[i]向下进行堆调整
{
    int left_child = 2 * i + 1;         // 左孩子索引
    int right_child = 2 * i + 2;        // 右孩子索引
    int max = i;                        // 选出当前结点与其左右孩子三者之中的最大值
    if (left_child < size && A[left_child] > A[max])
        max = left_child;
    if (right_child < size && A[right_child] > A[max])
        max = right_child;
    if (max != i)
    {
        Swap(A, i, max);                // 把当前结点和它的最大(直接)子节点进行交换
        Heapify(A, max, size);          // 递归调用,继续从当前结点向下进行堆调整
    }
}

int BuildHeap(int A[], int n)           // 建堆,时间复杂度O(n)
{
    int heap_size = n;
    for (int i = heap_size / 2 - 1; i >= 0; i--) // 从每一个非叶结点开始向下进行堆调整
        Heapify(A, i, heap_size);
    return heap_size;
}

void HeapSort(int A[], int n)
{
    int heap_size = BuildHeap(A, n);    // 建立一个最大堆
    while (heap_size > 1)           // 堆(无序区)元素个数大于1,未完成排序
    {
        // 将堆顶元素与堆的最后一个元素互换,并从堆中去掉最后一个元素
        // 此处交换操作很有可能把后面元素的稳定性打乱,所以堆排序是不稳定的排序算法
        Swap(A, 0, --heap_size);
        Heapify(A, 0, heap_size);     // 从新的堆顶元素开始向下进行堆调整,时间复杂度O(logn)
    }
}

int main()
{
    int A[] = { 5, 2, 9, 4, 7, 6, 1, 3, 8 };// 从小到大堆排序
    int n = sizeof(A) / sizeof(int);
    HeapSort(A, n);
    printf("堆排序结果:");
    for (int i = 0; i < n; i++)
    {
        printf("%d ", A[i]);
    }
    printf("\n");
    return 0;
}

快速排序

#include <stdio.h>

// 分类 ------------ 内部比较排序
// 数据结构 --------- 数组
// 最差时间复杂度 ---- 每次选取的基准都是最大(或最小)的元素,导致每次只划分出了一个分区,需要进行n-1次划分才能结束递归,时间复杂度为O(n^2)
// 最优时间复杂度 ---- 每次选取的基准都是中位数,这样每次都均匀的划分出两个分区,只需要logn次划分就能结束递归,时间复杂度为O(nlogn)
// 平均时间复杂度 ---- O(nlogn)
// 所需辅助空间 ------ 主要是递归造成的栈空间的使用(用来保存left和right等局部变量),取决于递归树的深度,一般为O(logn),最差为O(n)       
// 稳定性 ---------- 不稳定

void Swap(int A[], int i, int j)
{
    int temp = A[i];
    A[i] = A[j];
    A[j] = temp;
}

int Partition(int A[], int left, int right)  // 划分函数
{
    int pivot = A[right];               // 这里每次都选择最后一个元素作为基准
    int tail = left - 1;                // tail为小于基准的子数组最后一个元素的索引
    for (int i = left; i < right; i++)  // 遍历基准以外的其他元素
    {
        if (A[i] <= pivot)              // 把小于等于基准的元素放到前一个子数组末尾
        {
            Swap(A, ++tail, i);
        }
    }
    Swap(A, tail + 1, right);           // 最后把基准放到前一个子数组的后边,剩下的子数组既是大于基准的子数组
                                        // 该操作很有可能把后面元素的稳定性打乱,所以快速排序是不稳定的排序算法
    return tail + 1;                    // 返回基准的索引
}

void QuickSort(int A[], int left, int right)
{
    if (left >= right)
        return;
    int pivot_index = Partition(A, left, right); // 基准的索引
    QuickSort(A, left, pivot_index - 1);
    QuickSort(A, pivot_index + 1, right);
}

int main()
{
    int A[] = { 5, 2, 9, 4, 7, 6, 1, 3, 8 }; // 从小到大快速排序
    int n = sizeof(A) / sizeof(int);
    QuickSort(A, 0, n - 1);
    printf("快速排序结果:");
    for (int i = 0; i < n; i++)
    {
        printf("%d ", A[i]);
    }
    printf("\n");
    return 0;
}

非比较排序方法

计数排序

计数排序用到一个额外的计数数组C,根据数组C来将原数组A中的元素排到正确的位置。

  通俗地理解,例如有10个年龄不同的人,假如统计出有8个人的年龄不比小明大(即小于等于小明的年龄,这里也包括了小明),那么小明的年龄就排在第8位,通过这种思想可以确定每个人的位置,也就排好了序。当然,年龄一样时需要特殊处理(保证稳定性):通过反向填充目标数组,填充完毕后将对应的数字统计递减,可以确保计数排序的稳定性。

  计数排序的步骤如下:

  1. 统计数组A中每个值A[i]出现的次数,存入C[A[i]]
  2. 从前向后,使数组C中的每个值等于其与前一项相加,这样数组C[A[i]]就变成了代表数组A中小于等于A[i]的元素个数
  3. 反向填充目标数组B:将数组元素A[i]放在数组B的第C[A[i]]个位置(下标为C[A[i]] - 1),每放一个元素就将C[A[i]]递减

  计数排序的实现代码如下:

#include<iostream>
using namespace std;

// 分类 ------------ 内部非比较排序
// 数据结构 --------- 数组
// 最差时间复杂度 ---- O(n + k)
// 最优时间复杂度 ---- O(n + k)
// 平均时间复杂度 ---- O(n + k)
// 所需辅助空间 ------ O(n + k)
// 稳定性 ----------- 稳定


const int k = 100;   // 基数为100,排序[0,99]内的整数
int C[k];            // 计数数组

void CountingSort(int A[], int n)
{
    for (int i = 0; i < k; i++)   // 初始化,将数组C中的元素置0(此步骤可省略,整型数组元素默认值为0)
    {
        C[i] = 0;
    }
    for (int i = 0; i < n; i++)   // 使C[i]保存着等于i的元素个数
    {
        C[A[i]]++;
    }
    for (int i = 1; i < k; i++)   // 使C[i]保存着小于等于i的元素个数,排序后元素i就放在第C[i]个输出位置上
    {
        C[i] = C[i] + C[i - 1];
    }
    int *B = (int *)malloc((n) * sizeof(int));// 分配临时空间,长度为n,用来暂存中间数据
    for (int i = n - 1; i >= 0; i--)    // 从后向前扫描保证计数排序的稳定性(重复元素相对次序不变)
    {
        B[--C[A[i]]] = A[i];      // 把每个元素A[i]放到它在输出数组B中的正确位置上
                                  // 当再遇到重复元素时会被放在当前元素的前一个位置上保证计数排序的稳定性
    }
    for (int i = 0; i < n; i++)   // 把临时空间B中的数据拷贝回A
    {
        A[i] = B[i];
    }
    free(B);    // 释放临时空间 
}

int main()
{
    int A[] = { 15, 22, 19, 46, 27, 73, 1, 19, 8 };  // 针对计数排序设计的输入,每一个元素都在[0,100]上且有重复元素
    int n = sizeof(A) / sizeof(int);
    CountingSort(A, n);
    printf("计数排序结果:");
    for (int i = 0; i < n; i++)
    {
        printf("%d ", A[i]);
    }
    printf("\n");
    return 0;
}

基数排序

  基数排序的发明可以追溯到1887年赫尔曼·何乐礼在打孔卡片制表机上的贡献。它是这样实现的:将所有待比较正整数统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始进行基数为10的计数排序,一直到最高位计数排序完后,数列就变成一个有序序列(利用了计数排序的稳定性)。

  基数排序的实现代码如下:

#include<iostream>
using namespace std;

// 分类 ------------- 内部非比较排序
// 数据结构 ---------- 数组
// 最差时间复杂度 ---- O(n * dn)
// 最优时间复杂度 ---- O(n * dn)
// 平均时间复杂度 ---- O(n * dn)
// 所需辅助空间 ------ O(n * dn)
// 稳定性 ----------- 稳定

const int dn = 3;                // 待排序的元素为三位数及以下
const int k = 10;                // 基数为10,每一位的数字都是[0,9]内的整数
int C[k];

int GetDigit(int x, int d)          // 获得元素x的第d位数字
{
    int radix[] = { 1, 1, 10, 100 };// 最大为三位数,所以这里只要到百位就满足了
    return (x / radix[d]) % 10;
}

void CountingSort(int A[], int n, int d)// 依据元素的第d位数字,对A数组进行计数排序
{
    for (int i = 0; i < k; i++)
    {
        C[i] = 0;
    }
    for (int i = 0; i < n; i++)
    {
        C[GetDigit(A[i], d)]++;
    }
    for (int i = 1; i < k; i++)
    {
        C[i] = C[i] + C[i - 1];
    }
    int *B = (int*)malloc(n * sizeof(int));
    for (int i = n - 1; i >= 0; i--)
    {
        int dight = GetDigit(A[i], d);  // 元素A[i]当前位数字为dight   
        B[--C[dight]] = A[i];           // 根据当前位数字,把每个元素A[i]放到它在输出数组B中的正确位置上
        // 当再遇到当前位数字同为dight的元素时,会将其放在当前元素的前一个位置上保证计数排序的稳定性
    }
    for (int i = 0; i < n; i++)
    {
        A[i] = B[i];
    }
    free(B);
}

void LsdRadixSort(int A[], int n)     // 最低位优先基数排序
{
    for (int d = 1; d <= dn; d++)     // 从低位到高位
        CountingSort(A, n, d);        // 依据第d位数字对A进行计数排序
}

int main()
{
    int A[] = { 20, 90, 64, 289, 998, 365, 852, 123, 789, 456 };// 针对基数排序设计的输入
    int n = sizeof(A) / sizeof(int);
    LsdRadixSort(A, n);
    printf("基数排序结果:");
    for (int i = 0; i < n; i++)
    {
        printf("%d ", A[i]);
    }
    printf("\n");
    return 0;
}

桶排序

桶排序也叫箱排序。工作的原理是将数组元素映射到有限数量个桶里,利用计数排序可以定位桶的边界,每个桶再各自进行桶内排序(使用其它排序算法或以递归方式继续使用桶排序)。

  桶排序的实现代码如下:

#include<iostream>
using namespace std;

// 分类 ------------- 内部非比较排序
// 数据结构 --------- 数组
// 最差时间复杂度 ---- O(nlogn)或O(n^2),只有一个桶,取决于桶内排序方式
// 最优时间复杂度 ---- O(n),每个元素占一个桶
// 平均时间复杂度 ---- O(n),保证各个桶内元素个数均匀即可
// 所需辅助空间 ------ O(n + bn)
// 稳定性 ----------- 稳定

/* 本程序用数组模拟桶 */
const int bn = 5;    // 这里排序[0,49]的元素,使用5个桶就够了,也可以根据输入动态确定桶的数量
int C[bn];           // 计数数组,存放桶的边界信息

void InsertionSort(int A[], int left, int right)
{
    for (int i = left + 1; i <= right; i++)  // 从第二张牌开始抓,直到最后一张牌
    {
        int get = A[i];
        int j = i - 1;
        while (j >= left && A[j] > get)
        {
            A[j + 1] = A[j];
            j--;
        }
        A[j + 1] = get;
    }
}

int MapToBucket(int x)
{
    return x / 10;    // 映射函数f(x),作用相当于快排中的Partition,把大量数据分割成基本有序的数据块
}

void CountingSort(int A[], int n)
{
    for (int i = 0; i < bn; i++)
    {
        C[i] = 0;
    }
    for (int i = 0; i < n; i++)     // 使C[i]保存着i号桶中元素的个数
    {
        C[MapToBucket(A[i])]++;
    }
    for (int i = 1; i < bn; i++)    // 定位桶边界:初始时,C[i]-1为i号桶最后一个元素的位置
    {
        C[i] = C[i] + C[i - 1];
    }
    int *B = (int *)malloc((n) * sizeof(int));
    for (int i = n - 1; i >= 0; i--)// 从后向前扫描保证计数排序的稳定性(重复元素相对次序不变)
    {
        int b = MapToBucket(A[i]);  // 元素A[i]位于b号桶
        B[--C[b]] = A[i];           // 把每个元素A[i]放到它在输出数组B中的正确位置上
                                    // 桶的边界被更新:C[b]为b号桶第一个元素的位置
    }
    for (int i = 0; i < n; i++)
    {
        A[i] = B[i];
    }
    free(B);
}

void BucketSort(int A[], int n)
{
    CountingSort(A, n);          // 利用计数排序确定各个桶的边界(分桶)
    for (int i = 0; i < bn; i++) // 对每一个桶中的元素应用插入排序
    {
        int left = C[i];         // C[i]为i号桶第一个元素的位置
        int right = (i == bn - 1 ? n - 1 : C[i + 1] - 1);// C[i+1]-1为i号桶最后一个元素的位置
        if (left < right)        // 对元素个数大于1的桶进行桶内插入排序
            InsertionSort(A, left, right);
    }
}

int main()
{
    int A[] = { 29, 25, 3, 49, 9, 37, 21, 43 };// 针对桶排序设计的输入
    int n = sizeof(A) / sizeof(int);
    BucketSort(A, n);
    printf("桶排序结果:");
    for (int i = 0; i < n; i++)
    {
        printf("%d ", A[i]);
    }
    printf("\n");
    return 0;
}

猜你喜欢

转载自blog.csdn.net/h_666666/article/details/83927037