深度学习 | 分类任务中类别不均衡解决策略(附代码)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qiu931110/article/details/86560974

0.前言

在解决一个分类问题时,遇到样本不平衡问题。CSDN后,发现网上有很多类似于欠采样 ,重复采样,换模型等等宏观的概念,并没有太多可实际应用(代码)的策略。经过一番查找和调试,最终找到3个相对靠谱的策略,故总结此文给有需要同志,策略均来自网络,本人只是进行了可用性测试并总结于此。以下将简单介绍各个策略的机制以及对应代码(亲测能跑通)。

NOTE:下述代码均是基于caffe的,而且实现策略都是通过新增自定义层。主要流程大致为:修改caffe.proto–>导入hpp/cpp/cu–>重新编译。具体请看:Caffe | 自定义字段和层

1.带权重的softmaxLoss

在样本不均衡分类问题中,样本量大的类别往往会主导训练过程,因为其累积loss会比较大。带权重的softmaxloss函数通过加权来决定主导训练的类别。具体为增加pos_mult(指定某类的权重乘子)和pos_cid(指定的某类的类别编号)两个参数来确定类别和当前类别的系数。(若pos_mult=0.5,就表示当然类别重要度减半)。

代码实现github传送门

(1)修改caffe.proto文件
编辑src/caffe/proto/caffe.proto,主要是在原有的SoftmaxParameter上添加了pos_mul和pos_cid字段。

// Message that stores parameters used by SoftmaxLayer, SoftmaxWithLossLayer
message SoftmaxParameter {
  enum Engine {
    DEFAULT = 0;
    CAFFE = 1;
    CUDNN = 2;
  }
  optional Engine engine = 1 [default = DEFAULT];

  // The axis along which to perform the softmax -- may be negative to index
  // from the end (e.g., -1 for the last axis).
  // Any other axes will be evaluated as independent softmaxes.
  optional int32 axis = 2 [default = 1];
  optional float pos_mult = 3 [default = 1];
  optional int32 pos_cid = 4 [default = 1];
}

(2)导入hpp/cpp/cu文件
weighted_softmax_loss_layer.hpp

#ifndef CAFFE_WEIGHTED_SOFTMAX_LOSS_LAYER_HPP_
#define CAFFE_WEIGHTED_SOFTMAX_LOSS_LAYER_HPP_

#include <vector>

#include "caffe/blob.hpp"
#include "caffe/layer.hpp"
#include "caffe/proto/caffe.pb.h"

#include "caffe/layers/loss_layer.hpp"
#include "caffe/layers/softmax_layer.hpp"

namespace caffe {

/**
 * @brief A weighted version of SoftmaxWithLossLayer.
 *
 * TODO: Add description. Add the formulation in math.
 */
template <typename Dtype>
class WeightedSoftmaxWithLossLayer : public LossLayer<Dtype> {
 public:
   /**
    * @param param provides LossParameter loss_param, with options:
    *  - ignore_label (optional)
    *    Specify a label value that should be ignored when computing the loss.
    *  - normalize (optional, default true)
    *    If true, the loss is normalized by the number of (nonignored) labels
    *    present; otherwise the loss is simply summed over spatial locations.
    */
  explicit WeightedSoftmaxWithLossLayer(const LayerParameter& param)
      : LossLayer<Dtype>(param) {}
  virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);
  virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);

  virtual inline const char* type() const { return "WeightedSoftmaxWithLoss"; }
  virtual inline int ExactNumBottomBlobs() const { return -1; }
  virtual inline int MinBottomBlobs() const { return 1; }
  virtual inline int MaxBottomBlobs() const { return 2; }
  virtual inline int ExactNumTopBlobs() const { return -1; }
  virtual inline int MinTopBlobs() const { return 1; }
  virtual inline int MaxTopBlobs() const { return 2; }

 protected:
  /// @copydoc WeightedSoftmaxWithLossLayer
  virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);
  virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);
  /**
   * @brief Computes the softmax loss error gradient w.r.t. the predictions.
   *
   * Gradients cannot be computed with respect to the label inputs (bottom[1]),
   * so this method ignores bottom[1] and requires !propagate_down[1], crashing
   * if propagate_down[1] is set.
   *
   * @param top output Blob vector (length 1), providing the error gradient with
   *      respect to the outputs
   *   -# @f$ (1 \times 1 \times 1 \times 1) @f$
   *      This Blob's diff will simply contain the loss_weight* @f$ \lambda @f$,
   *      as @f$ \lambda @f$ is the coefficient of this layer's output
   *      @f$\ell_i@f$ in the overall Net loss
   *      @f$ E = \lambda_i \ell_i + \mbox{other loss terms}@f$; hence
   *      @f$ \frac{\partial E}{\partial \ell_i} = \lambda_i @f$.
   *      (*Assuming that this top Blob is not used as a bottom (input) by any
   *      other layer of the Net.)
   * @param propagate_down see Layer::Backward.
   *      propagate_down[1] must be false as we can't compute gradients with
   *      respect to the labels.
   * @param bottom input Blob vector (length 2)
   *   -# @f$ (N \times C \times H \times W) @f$
   *      the predictions @f$ x @f$; Backward computes diff
   *      @f$ \frac{\partial E}{\partial x} @f$
   *   -# @f$ (N \times 1 \times 1 \times 1) @f$
   *      the labels -- ignored as we can't compute their error gradients
   */
  virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
      const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
  virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
      const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);

/// Read the normalization mode parameter and compute the normalizer based
  /// on the blob size.  If normalization_mode is VALID, the count of valid
  /// outputs will be read from valid_count, unless it is -1 in which case
  /// all outputs are assumed to be valid.
  virtual Dtype get_normalizer(
      LossParameter_NormalizationMode normalization_mode, int valid_count);

  /// The internal SoftmaxLayer used to map predictions to a distribution.
  shared_ptr<Layer<Dtype> > softmax_layer_;
  /// prob stores the output probability predictions from the SoftmaxLayer.
  Blob<Dtype> prob_;
  /// bottom vector holder used in call to the underlying SoftmaxLayer::Forward
  vector<Blob<Dtype>*> softmax_bottom_vec_;
  /// top vector holder used in call to the underlying SoftmaxLayer::Forward
  vector<Blob<Dtype>*> softmax_top_vec_;
  /// Whether to ignore instances with a certain label.
  bool has_ignore_label_;
  /// The label indicating that an instance should be ignored.
  int ignore_label_;
  /// How to normalize the output loss.
  LossParameter_NormalizationMode normalization_;
  
  int softmax_axis_, outer_num_, inner_num_;

  float pos_mult_;
  int pos_cid_;
};


}  // namespace caffe

#endif  // CAFFE_WEIGHTED_SOFTMAX_LOSS_LAYER_HPP_

weighted_softmax_loss_layer.cpp

#include <algorithm>
#include <cfloat>
#include <vector>

#include "caffe/layers/weighted_softmax_loss_layer.hpp"
#include "caffe/util/math_functions.hpp"

namespace caffe {

template <typename Dtype>
void WeightedSoftmaxWithLossLayer<Dtype>::LayerSetUp(
    const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
  LossLayer<Dtype>::LayerSetUp(bottom, top);
  LayerParameter softmax_param(this->layer_param_);
  softmax_param.set_type("Softmax");
  softmax_layer_ = LayerRegistry<Dtype>::CreateLayer(softmax_param);
  softmax_bottom_vec_.clear();
  softmax_bottom_vec_.push_back(bottom[0]);
  softmax_top_vec_.clear();
  softmax_top_vec_.push_back(&prob_);
  softmax_layer_->SetUp(softmax_bottom_vec_, softmax_top_vec_);
  pos_mult_ = this->layer_param_.softmax_param().pos_mult();
  pos_cid_ = this->layer_param_.softmax_param().pos_cid();

  LOG(INFO) << "mult: " << pos_mult_ << ", id: " << pos_cid_;

  has_ignore_label_ =
    this->layer_param_.loss_param().has_ignore_label();
  if (has_ignore_label_) {
    ignore_label_ = this->layer_param_.loss_param().ignore_label();
  }
  if (!this->layer_param_.loss_param().has_normalization() &&
      this->layer_param_.loss_param().has_normalize()) {
    normalization_ = this->layer_param_.loss_param().normalize() ?
                     LossParameter_NormalizationMode_VALID :
                     LossParameter_NormalizationMode_BATCH_SIZE;
  } else {
    normalization_ = this->layer_param_.loss_param().normalization();
  }
}

template <typename Dtype>
void WeightedSoftmaxWithLossLayer<Dtype>::Reshape(
    const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
  LossLayer<Dtype>::Reshape(bottom, top);
  softmax_layer_->Reshape(softmax_bottom_vec_, softmax_top_vec_);
  softmax_axis_ =
      bottom[0]->CanonicalAxisIndex(this->layer_param_.softmax_param().axis());
  outer_num_ = bottom[0]->count(0, softmax_axis_);
  inner_num_ = bottom[0]->count(softmax_axis_ + 1);
  //LOG(INFO) << "outer_num_: " << outer_num_ << ", inner_num_: " << inner_num_;

  CHECK_EQ(outer_num_ * inner_num_, bottom[1]->count())
      << "Number of labels must match number of predictions; "
      << "e.g., if softmax axis == 1 and prediction shape is (N, C, H, W), "
      << "label count (number of labels) must be N*H*W, "
      << "with integer values in {0, 1, ..., C-1}.";
  if (top.size() >= 2) {
    // softmax output
    top[1]->ReshapeLike(*bottom[0]);
  }
}

template <typename Dtype>
Dtype WeightedSoftmaxWithLossLayer<Dtype>::get_normalizer(
    LossParameter_NormalizationMode normalization_mode, int valid_count) {
  Dtype normalizer;
  switch (normalization_mode) {
    case LossParameter_NormalizationMode_FULL:
      normalizer = Dtype(outer_num_ * inner_num_);
      break;
    case LossParameter_NormalizationMode_VALID:
      if (valid_count == -1) {
        normalizer = Dtype(outer_num_ * inner_num_);
      } else {
        normalizer = Dtype(valid_count);
      }
      break;
    case LossParameter_NormalizationMode_BATCH_SIZE:
      normalizer = Dtype(outer_num_);
      break;
    case LossParameter_NormalizationMode_NONE:
      normalizer = Dtype(1);
      break;
    default:
      LOG(FATAL) << "Unknown normalization mode: "
          << LossParameter_NormalizationMode_Name(normalization_mode);
  }
  // Some users will have no labels for some examples in order to 'turn off' a
  // particular loss in a multi-task setup. The max prevents NaNs in that case.
  return std::max(Dtype(1.0), normalizer);
}

template <typename Dtype>
void WeightedSoftmaxWithLossLayer<Dtype>::Forward_cpu(
    const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
  // The forward pass computes the softmax prob values.
  softmax_layer_->Forward(softmax_bottom_vec_, softmax_top_vec_);
  const Dtype* prob_data = prob_.cpu_data();
  const Dtype* label = bottom[1]->cpu_data();
  
   int dim = prob_.count() / outer_num_;
   int count = 0;
   Dtype loss = 0;
   LOG(INFO) << "dim:" << dim;

   for (int i = 0; i < outer_num_; ++i) {
      for (int j = 0; j < inner_num_; j++) {
      const int label_value = static_cast<int>(label[i * inner_num_ + j]);
      if (has_ignore_label_ && label_value == ignore_label_) {
        continue;
      }
      DCHECK_GE(label_value, 0);
      DCHECK_LT(label_value, prob_.shape(softmax_axis_));
      Dtype w = (label_value == pos_cid_) ? pos_mult_ : 1;
      loss -= w * log(std::max(prob_data[i * dim + label_value * inner_num_ + j],
                               Dtype(FLT_MIN)));
      ++count;
    }
  }
  top[0]->mutable_cpu_data()[0] = loss / get_normalizer(normalization_, count);
  if (top.size() == 2) {
    top[1]->ShareData(prob_);
  }
}

template <typename Dtype>
void WeightedSoftmaxWithLossLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
    const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
  if (propagate_down[1]) {
    LOG(FATAL) << this->type()
               << " Layer cannot backpropagate to label inputs.";
  }
  if (propagate_down[0]) {
    Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();
    const Dtype* prob_data = prob_.cpu_data();
    caffe_copy(prob_.count(), prob_data, bottom_diff);
    const Dtype* label = bottom[1]->cpu_data();

    int dim = prob_.count() / outer_num_;

    int count = 0;
    for (int i = 0; i < outer_num_; ++i) {
      for (int j = 0; j < inner_num_; ++j) {
        const int label_value = static_cast<int>(label[i * inner_num_ + j]);
        if (has_ignore_label_ && label_value == ignore_label_) {
          for (int c = 0; c < bottom[0]->shape(softmax_axis_); ++c) {
            bottom_diff[i * dim + c * inner_num_ + j] = 0;
          }
        } else {
          bottom_diff[i * dim + label_value * inner_num_ + j] -= 1;
          Dtype w = (label_value == pos_cid_) ? pos_mult_ : 1;
          for (int k = 0; k < bottom[0]->shape(softmax_axis_); ++k) {
            bottom_diff[i * dim + k * inner_num_ + j] *= w;
          }
          ++count;
        }
      }
    }
    // Scale gradient
    Dtype loss_weight = top[0]->cpu_diff()[0] /
                        get_normalizer(normalization_, count);
    caffe_scal(prob_.count(), loss_weight, bottom_diff);
  }
}


#ifdef CPU_ONLY
STUB_GPU(WeightedSoftmaxWithLossLayer);
#endif

INSTANTIATE_CLASS(WeightedSoftmaxWithLossLayer);
REGISTER_LAYER_CLASS(WeightedSoftmaxWithLoss);
}  // namespace caffe

weighted_softmax_loss_layer.cu

#include <algorithm>
#include <cfloat>
#include <vector>

#include "caffe/layers/weighted_softmax_loss_layer.hpp"
#include "caffe/util/math_functions.hpp"

namespace caffe {

template <typename Dtype>
__global__ void WeightedSoftmaxLossForwardGPU(const int nthreads,
          const Dtype* prob_data, const Dtype* label, Dtype* loss,
	  const Dtype pos_mult_, const int pos_cid_,
          const int num, const int dim, const int spatial_dim,
          const bool has_ignore_label_, const int ignore_label_,
          Dtype* counts) {
  CUDA_KERNEL_LOOP(index, nthreads) {
    const int n = index / spatial_dim;
    const int s = index % spatial_dim;
    const int label_value = static_cast<int>(label[n * spatial_dim + s]);
    Dtype w = (label_value == pos_cid_) ? pos_mult_ : 1;
    if (has_ignore_label_ && label_value == ignore_label_) {
      loss[index] = 0;
      counts[index] = 0;
    } else {
      loss[index] = -w * log(max(prob_data[n * dim + label_value * spatial_dim + s],
                                 Dtype(FLT_MIN)));
      counts[index] = 1;
    }
  }
}

template <typename Dtype>
void WeightedSoftmaxWithLossLayer<Dtype>::Forward_gpu(
    const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
  softmax_layer_->Forward(softmax_bottom_vec_, softmax_top_vec_);
  const Dtype* prob_data = prob_.gpu_data();
  const Dtype* label = bottom[1]->gpu_data();

  const int dim = prob_.count() / outer_num_;
  const int nthreads = outer_num_ * inner_num_;
  // Since this memory is not used for anything until it is overwritten
  // on the backward pass, we use it here to avoid having to allocate new GPU
  // memory to accumulate intermediate results in the kernel.
  Dtype* loss_data = bottom[0]->mutable_gpu_diff();
  // Similarly, this memory is never used elsewhere, and thus we can use it
  // to avoid having to allocate additional GPU memory.
  Dtype* counts = prob_.mutable_gpu_diff();
  // NOLINT_NEXT_LINE(whitespace/operators)
  WeightedSoftmaxLossForwardGPU<Dtype><<<CAFFE_GET_BLOCKS(nthreads),
      CAFFE_CUDA_NUM_THREADS>>>(nthreads, prob_data, label, loss_data,
      pos_mult_, pos_cid_, 
      outer_num_, dim, inner_num_, has_ignore_label_, ignore_label_, counts);
  Dtype loss;
  caffe_gpu_asum(nthreads, loss_data, &loss);
  Dtype valid_count = -1;
  // Only launch another CUDA kernel if we actually need the count of valid
  // outputs.
  if (normalization_ == LossParameter_NormalizationMode_VALID &&
      has_ignore_label_) {
    caffe_gpu_asum(nthreads, counts, &valid_count);
  }
  top[0]->mutable_cpu_data()[0] = loss / get_normalizer(normalization_,
                                                        valid_count);
  if (top.size() == 2) {
    top[1]->ShareData(prob_);
  }
}

template <typename Dtype>
__global__ void WeightedSoftmaxLossBackwardGPU(const int nthreads, const Dtype* top,
          const Dtype* label, Dtype* bottom_diff, 
	  const Dtype pos_mult_, const int pos_cid_,
	  const int num, const int dim,
          const int spatial_dim, const bool has_ignore_label_,
          const int ignore_label_, Dtype* counts) {
  const int channels = dim / spatial_dim;

  CUDA_KERNEL_LOOP(index, nthreads) {
    const int n = index / spatial_dim;
    const int s = index % spatial_dim;
    const int label_value = static_cast<int>(label[n * spatial_dim + s]);
    Dtype w = (label_value == pos_cid_) ? pos_mult_ : 1;

    if (has_ignore_label_ && label_value == ignore_label_) {
      for (int c = 0; c < channels; ++c) {
        bottom_diff[n * dim + c * spatial_dim + s] = 0;
      }
      counts[index] = 0;
    } else {
      bottom_diff[n * dim + label_value * spatial_dim + s] -= 1;
      counts[index] = 1;
      for (int c = 0; c < channels; ++c) {
        bottom_diff[n * dim + c * spatial_dim + s] *= w;
      }
    }
  }
}

template <typename Dtype>
void WeightedSoftmaxWithLossLayer<Dtype>::Backward_gpu(const vector<Blob<Dtype>*>& top,
    const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
  if (propagate_down[1]) {
    LOG(FATAL) << this->type()
               << " Layer cannot backpropagate to label inputs.";
  }
  if (propagate_down[0]) {
    Dtype* bottom_diff = bottom[0]->mutable_gpu_diff();
    const Dtype* prob_data = prob_.gpu_data();
    const Dtype* top_data = top[0]->gpu_data();
    caffe_gpu_memcpy(prob_.count() * sizeof(Dtype), prob_data, bottom_diff);
    const Dtype* label = bottom[1]->gpu_data();

    const int dim = prob_.count() / outer_num_;
    const int nthreads = outer_num_ * inner_num_;
    // Since this memory is never used for anything else,
    // we use to to avoid allocating new GPU memory.
    Dtype* counts = prob_.mutable_gpu_diff();
    // NOLINT_NEXT_LINE(whitespace/operators)
    WeightedSoftmaxLossBackwardGPU<Dtype><<<CAFFE_GET_BLOCKS(nthreads),
        CAFFE_CUDA_NUM_THREADS>>>(nthreads, top_data, label, bottom_diff,
	      pos_mult_, pos_cid_, outer_num_, dim, inner_num_, has_ignore_label_,
        ignore_label_, counts);
    Dtype valid_count = -1;
    // Only launch another CUDA kernel if we actually need the count of valid
    // outputs.
    if (normalization_ == LossParameter_NormalizationMode_VALID &&
        has_ignore_label_) {
      caffe_gpu_asum(nthreads, counts, &valid_count);
    }
    const Dtype loss_weight = top[0]->cpu_diff()[0] /
                              get_normalizer(normalization_, valid_count);
    caffe_gpu_scal(prob_.count(), loss_weight , bottom_diff);
  }
}

INSTANTIATE_LAYER_GPU_FUNCS(WeightedSoftmaxWithLossLayer);

}  // namespace caffe

(3)编译

(4)使用方法

layer {
  name: "loss"
  type: "WeightedSoftmaxWithLoss"
  bottom: "fc_end"
  bottom: "label"
  top: "loss"
  softmax_param {
    pos_cid: 1
    pos_mult: 0.5
  }
}

需要注意的是pos_cid也是从0开始的,若指定为0表示pos_mult的参数将乘到对应的类别中,简而言之就是和标签对应,对应代码如下。

 Dtype w = (label_value == pos_cid_) ? pos_mult_ : 1;

2.OHEMLoss

OHEM被称为难例挖掘,针对模型训练过程中导致损失值很大的一些样本(即使模型很大概率分类错误的样本),重新训练它们.维护一个错误分类样本池, 把每个batch训练数据中的出错率很大的样本放入该样本池中,当积累到一个batch以后,将这些样本放回网络重新训练。通俗的讲OHEM就是加强loss大样本的训练。

代码实现查看上一篇文章:Caffe | 自定义字段和层

(1)修改caffe.proto文件

(2)导入hpp/cpp/cu文件

(3)编译

(4)使用方法

3.focalLoss

该loss就是是在带权重的基础上作出了改进,解决样本不平衡问题的,总体思想和带权重的有点类似, focal loss首先解决的就是样本不平衡的问题,类似于softmaxloss。即在CE上加权重,当class为1的时候,乘以权重alpha,当class为0的时候,乘以权重1-alpha,这是最基本的解决样本不平衡的方法,也就是在loss计算时乘以权重。

在此基础上,focalloss的核心就是在CE的前面乘上了(1-pt)的gama次方。pt就是准确率,因此该公式表示的含义为:准确率越高 ,整个loss值就越小。所以我们把参数gama称为衰减系数,准确率越高的类衰减的越厉害。这就是的准确率低的类能够占据loss的大部分,并主导训练。

而第二种方法OHEM是让loss大的进行主导。两者在这个机制上殊途同归。但OHEM的缺点是其只取一部分多数样本进行loss计算来实现上述功能,而focalloss则作用于所有样本。最终focalloss的公式如下:

代码实现github传送门

(1)修改caffe.proto文件

// Focal Loss layer
optional FocalLossParameter focal_loss_param = 145;//需要和自己的protobuf序列号对应,不能产生冲突
//否则会报错:Field number 124 has already been used in “caffe.LayerParameter” by field "focal_loss_param"

// Focal Loss for Dense Object Detection
message FocalLossParameter {
  enum Type {
    ORIGIN = 0; // FL(p_t)  = -(1 - p_t) ^ gama * log(p_t), where p_t = p if y == 1 else 1 - p, whre p = sigmoid(x)
    LINEAR = 1; // FL*(p_t) = -log(p_t) / gama, where p_t = sigmoid(gama * x_t + beta), where x_t = x * y, y is the ground truth label {-1, 1}
  }
  optional Type type   = 1 [default = ORIGIN]; 
  optional float gamma = 2 [default = 2];
  // cross-categories weights to solve the imbalance problem
  optional float alpha = 3 [default = 0.25]; 
  optional float beta  = 4 [default = 1.0];
}

(2)导入hpp/cpp/cu文件

(3)编译

(4)使用方法

layer {
  name: "loss_cls"
  type: "FocalLoss"
  bottom: "cls_score"
  bottom: "labels"
  propagate_down: 1
  propagate_down: 0
  top: "loss_cls"
  include { phase: TRAIN }
  loss_weight: 1
  loss_param { ignore_label: -1 normalize: true }
  focal_loss_param { alpha: 0.25 gamma: 2 }
}

猜你喜欢

转载自blog.csdn.net/qiu931110/article/details/86560974