数分原理(Rudin)的一道证明题

Ex.7.23 Let P 0 = 0 ,    P n + 1 ( x ) = P n ( x ) + x 2 P n 2 ( x ) 2 . P_0 = 0, \; P_{n+1}(x) = P_n(x) + \small{\dfrac{x^2 -P_n^2(x)}{2}}.\quad Prove that P n [ 1 , 1 ] x . P_n\overset{_{[-1,1]}}{\rightrightarrows}|x|.
\qquad (Stone-Weirestrass Th. can be proven without 1st prove Th.7.26)
\qquad Hint: Use the identity x P n + 1 = ( x P n ( x ) ) ( 1 x + P n ( x ) 2 ) \displaystyle{|x| -P_{n+1} = (|x|- P_n(x))\big(1-{\small{\frac{|x|+P_n(x)}{2}}}\big)} to prove that
0 P n ( x ) P n + 1 ( x ) x    ( x < 1 ) \qquad 0\le P_n(x)\le P_{n+1}(x) \le |x|\;(|x| < 1) hence x P n ( x ) x ( 1 x 2 ) n < 2 n + 1 \displaystyle{|x| -P_n(x)\le |x|\big(1-{\small{\frac{|x|}{2}}}\big)^n < \small{\frac{2}{n+1}}}
Proof From the recursive definition, we have
x P n + 1 ( x ) = x P n ( x ) x 2 P n 2 ( x ) 2 = ( x P n ( x ) ) ( 1 x + P n ( x ) 2 ) . ( ) \qquad |x| -P_{n+1}(x) = |x| - P_n(x) - {\small{\dfrac{x^2 -P_n^2(x)}{2}}} = (|x|- P_n(x))\big(1-{\small{\dfrac{|x|+P_n(x)}{2}}}\big).\qquad (\star)
\qquad For x < 1 |x|< 1 , since P 0 = 0 P_0 = 0 , by induction ( ) (\star) implies 0 P n ( x ) P n + 1 ( x ) x    ( n ) 0\le P_n(x)\le P_{n+1}(x) \le |x|\;(\forall n) and so
( )       0 x P n + 1 ( x ) ( x P n ( x ) ) ( 1 x 2 ) ( x P n k ) ( 1 x 2 ) k + 1 \qquad (\star)\implies 0\le |x| - P_{n+1}(x) \le (|x| -P_n(x))(1-\frac{|x|}{2})\le \cdots\le (|x| -P_{n-k})(1-\frac{|x|}{2})^{k+1} .
\qquad Therefore 0 x P n ( x ) x ( 1 x 2 ) n 2 n + 1    ( n N   x ( 1 , 1 ) ) . \quad 0\le |x| - P_n(x) \le |x|(1-\frac{|x|}{2})^n \le \frac{2}{n+1}\;(\forall n\in\mathbb{N}\,\forall x\in (-1,1)).\quad\square
\qquad The last inequality comes from
φ ( t ) = t ( 1 t 2 ) n ,   φ   ( t ) = ( 1 t 2 ) n 1 ( 1 ( n + 1 ) t 2 ) ,   max φ ( [ 0 , 1 ] ) = φ ( 2 n + 1 ) < 2 n + 1 \qquad\qquad\quad \small{\varphi(t) = t(1-\frac{t}{2})^n,\,\varphi\,'(t) = (1- \frac{t}{2})^{n-1}(1-\frac{(n+1)t}{2}),\,\max\varphi([0,1]) = \varphi(\frac{2}{n+1}) < \frac{2}{n+1}}

猜你喜欢

转载自blog.csdn.net/jyfan0806/article/details/86572250
今日推荐