【BZOJ2154】—Crash的数字表格(莫比乌斯反演+整除分块)

传送门

题意:求 i = 1 n j = 1 m l c m ( i , j ) , n , m 1 e 7 \sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j),n,m\le1e7


S o l u t i o n Solution

考虑到 l c m lcm 无法处理,我们先变成 g c d gcd 的形式

a n s = i = 1 n j = 1 m i j g c d ( i , j ) ans=\sum_{i=1}^{n}\sum_{j=1}^{m}\frac {i*j}{gcd(i,j)}

考虑枚举 g c d gcd

a n s = d = 1 m i n ( n , m ) i = 1 n j = 1 m [ g c d ( i , j ) = d ] i j d ans=\sum_{d=1}^{min(n,m)}\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)=d]\frac {ij}d = d = 1 m i n ( n , m ) d i n d j m [ g c d ( i , j ) = d ] i j d =\sum_{d=1}^{min(n,m)}\sum_{d|i}^{n}\sum_{d|j}^{m}[gcd(i,j)=d]\frac {ij}d

i = d i , j = d j i'=\frac d i,j'=\frac d j (即从枚举 d d 的倍数变成枚举是 d d 的几倍)
则(为了方便仍用 i , j i,j 表示 i , j i',j' )

a n s = d = 1 m i n ( n , m ) i = 1 n d j = 1 m d [ g c d ( d i , d j ) = d ] i d j d d ans=\sum_{d=1}^{min(n,m)}\sum_{i=1}^{\frac n d}\sum_{j=1}^{\frac m d}[gcd(di,dj)=d] \frac{id*jd}{d} = d = 1 m i n ( n , m ) d i = 1 n d j = 1 m d [ g c d ( i , j ) = 1 ] i j =\sum_{d=1}^{min(n,m)}d\sum_{i=1}^{\frac n d}\sum_{j=1}^{\frac m d}[gcd(i,j)=1]ij

考虑有个莫比乌斯函数的简单结论 d n μ ( d ) = [ n = = 1 ] \sum_{d|n}\mu(d)=[n==1]

考虑的式子中有个 [ g c d ( i , j ) = 1 ] [gcd(i,j)=1]
则:

a n s = d = 1 m i n ( n , m ) d i = 1 n d j = 1 m d T g c d ( i , j ) μ ( T ) i j ans=\sum_{d=1}^{min(n,m)}d\sum_{i=1}^{\frac n d}\sum_{j=1}^{\frac m d}\sum_{T|gcd(i,j)}\mu(T)ij

考虑把 T T 提到前面来:

a n s = d = 1 m i n ( n , m ) d T = 1 m i n ( n d , m d ) μ ( T ) i = 1 n d j = 1 m d i j [ T g c d ( i , j ) ] ans=\sum_{d=1}^{min(n,m)}d\sum_{T=1}^{min(\frac n d,\frac m d)}\mu(T)\sum_{i=1}^{\frac n d}\sum_{j=1}^{\frac m d}ij[T|gcd(i,j)]

考虑令 i = i T , j = j T i'=i*T,j'=j*T
则(同样为了方便直接用 i , j i,j 表示了)

a n s = d = 1 m i n ( n , m ) d T = 1 m i n ( n d , m d ) μ ( T ) i = 1 n d T j = 1 m d T i j T 2 ans=\sum_{d=1}^{min(n,m)}d\sum_{T=1}^{min(\frac n d,\frac m d)}\mu(T)\sum_{i=1}^{\frac {n}{dT}}\sum_{j=1}^{\frac{m}{dT}}ijT^2
= d = 1 m i n ( n , m ) d T = 1 m i n ( n d , m d ) μ ( T ) T 2 i = 1 n d T j = 1 m d T i j =\sum_{d=1}^{min(n,m)}d\sum_{T=1}^{min(\frac n d,\frac m d)}\mu(T)T^2\sum_{i=1}^{\frac {n}{dT}}\sum_{j=1}^{\frac{m}{dT}}ij

我们发现 i = 1 n d T j = 1 m d T i j \sum_{i=1}^{\frac {n}{dT}}\sum_{j=1}^{\frac{m}{dT}}ij 这一团是可以 O ( 1 ) O(1) 求的
i = 1 n j = 1 m i j = n ( n + 1 ) / 2 m ( m + 1 ) / 2 \sum_{i=1}^{n}\sum_{j=1}^{m}ij=n*(n+1)/2*m*(m+1)/2

μ ( T ) T 2 \mu(T)T^2 可以线性筛 μ \mu 时求出

就可以先整除分块一下 d d ,得到 n d , m d \frac n d,\frac m d 的值后在里面套一个整除分块求

T = 1 m i n ( n d , m d ) μ ( T ) T 2 i = 1 n d T j = 1 m d T i j \sum_{T=1}^{min(\frac n d,\frac m d)}\mu(T)T^2\sum_{i=1}^{\frac {n}{dT}}\sum_{j=1}^{\frac{m}{dT}}ij 这一团

总复杂度 O ( n n ) = O ( n ) O(\sqrt n *\sqrt n)=O(n)

#include<bits/stdc++.h>
using namespace std;
#define int long long
inline int read(){
	char ch=getchar();
	int res=0,f=1;
	while(!isdigit(ch)){if(ch=='-')f=-f;ch=getchar();}
	while(isdigit(ch))res=(res<<3)+(res<<1)+(ch^48),ch=getchar();
	return res*f;
}
const int N=10000005;
const int mod=20101009;
int mu[N],pr[N],vis[N],sum[N],tot,ans;
inline void init(){
	mu[1]=1;
	for(int i=2;i<N;i++){
		if(!vis[i])pr[++tot]=i,mu[i]=-1;
		for(int j=1;j<=tot&&i*pr[j]<N;j++){
			vis[pr[j]*i]=1;
			if(i%pr[j]==0)break;
			mu[i*pr[j]]=-mu[i];
		}
	}
	for(int i=1;i<N;i++){
		sum[i]=(sum[i-1]+(i*i)*mu[i])%mod;
	}
	//for(int i=20;i<=30;i++)cout<<sum[i]<<'\n';
}
inline int t(int n,int m){
	return (((n*(n+1)/2)%mod)*((m*(m+1)/2)%mod)%mod);
}
inline int calc(int n,int m){
	int p=min(n,m),res=0;
	for(int i=1,nxt;i<=p;i=nxt+1){
		nxt=min(n/(n/i),m/(m/i));
		res=(res+((sum[nxt]-sum[i-1]+mod)%mod)*t(n/i,m/i)%mod)%mod;
	}
	return res;
}
signed main(){
	init();
	int n=read(),m=read();
	int p=min(n,m);
	for(int i=1,nxt;i<=p;i=nxt+1){
		nxt=min(n/(n/i),m/(m/i));
		ans=(ans+(((nxt-i+1)*(nxt+i)/2)%mod)*calc(n/i,m/i)%mod)%mod;
	}
	cout<<ans<<'\n';
}

猜你喜欢

转载自blog.csdn.net/qq_42555009/article/details/87823139