Hadoop(5)-HA(High Available)高可用性机制

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/yyl424525/article/details/77805379

1 简介
1.1 HDFS HA背景
在hadoop2.0之前,namenode只有一个,HDFS集群中NameNode 存在单点故障(SPOF)。对于只有一个NameNode的集群,如果NameNode机器出现意外情况,将导致整个集群无法使用,直到NameNode 重新启动。
影响HDFS集群不可用主要包括以下两种情况:
一是NameNode机器宕机,将导致集群不可用,重启NameNode之后才可使用;
二是计划内的NameNode节点软件或硬件升级,导致集群在短时间内不可用。
HDFS的高可用性(HA)就可以解决上述问题,通过提供选择运行在同一集群中的一个热备的“主/备”两个冗余NameNode,允许在机器宕机或系统维护的时候,快速转移到另一个NameNode。

1.2 SPOF方案回顾
Hadoop1.0有secondarynamenode,checkpointnode,buckcupnode这些,但是单点问题依然存在
(1)Secondary NameNode:我们常常以为secondary namenode和namenode名字相同,以为它也是HA的一种,但这是一个大误区!!!!它不是HA,它只是阶段性的合并edits和fsimage,以缩短集群启动的时间。当NN失效的时候,Secondary NN并无法立刻提供服务,Secondary NN甚至无法保证数据完整性:如果NN数据丢失的话,在上一次合并后的文件系统的改动会丢失
(2)Backup NameNode (HADOOP-4539):它在内存中复制了NN的当前状态,算是Warm Standby,可也就仅限于此,并没有failover等。它同样是阶段性的做checkpoint,也无法保证数据完整性
(3)手动把name.dir指向NFS(Network File System),这是安全的Cold Standby,可以保证元数据不丢失,但集群的恢复则完全靠手动
(4)Facebook AvatarNode:Facebook有强大的运维做后盾,所以Avatarnode只是Hot Standby,并没有自动切换,当主NN失效的时候,需要管理员确认,然后手动把对外提供服务的虚拟IP映射到Standby NN,这样做的好处是确保不会发生脑裂的场景。其某些设计思想和Hadoop 2.0里的HA非常相似,从时间上来看,Hadoop 2.0应该是借鉴了Facebook的做法
Facebook AvatarNode 原理示例图
这里写图片描述
○ PrimaryNN与StandbyNN之间通过NFS来共享FsEdits(文件系统编辑日志)、FsImage文件,这样主备NN之间就拥有了一致的目录树和block信息;而block的位置信息,可以根据DN向两个NN上报的信息过程中构建起来。这样再辅以虚IP,可以较好达到主备NN快速热切的目的。但是显然,这里的NFS又引入了新的SPOF
○ 在主备NN共享元数据的过程中,也有方案通过主NN将FsEdits的内容通过与备NN建立的网络IO流,实时写入备NN,并且保证整个过程的原子性。这种方案,解决了NFS共享元数据引入的SPOF,但是主备NN之间的网络连接又会成为新的问题

2 hadoop2.X ha 原理
hadoop2.x的HA 机制有两个namenode,一个是active namenode,状态是active;另外一个是standby namenode,状态是standby。两者的状态是可以切换的,但不能同时两个都是active状态,最多只有1个是active状态。只有active namenode提供对外的服务,standby namenode是不对外服务的。active namenode和standby namenode之间通过NFS或者JN(journalnode,QJM方式)来同步数据。

2.1 NFS(Network File System)方式
NFS作为active namenode和standby namenode之间数据共享的存储。active namenode会把最近的edits文件写到NFS,而standby namenode从NFS中把数据读过来。这个方式的缺点是,如果active namenode或者standby namenode有一个和NFS之间网络有问题,则会造成他们之前数据的同步出问题。同1.2的spof解决方案中的一样,还是存在SPOF问题

2.2 QJM(Quorum Journal Manager )方式
hadoop2.x之后,Clouera提出了QJM/Qurom Journal Manager,
QJM的方式可以解决上述NFS容错机制不足的问题。active namenode和standby namenode之间是通过一组journalnode(数量是奇数,可以是3,5,7…,2n+1)来共享数据。active namenode把最近的edits文件写到2n+1个journalnode上,只要有n+1个写入成功就认为这次写入操作成功了,然后standby namenode就可以从journalnode上读取了。可以看到,QJM方式有容错的机制,可以容忍n个journalnode的失败。
这是一个基于Paxos算法实现的HDFS HA方案,它给出了一种较好的解决思路和方案,示意图如下:
这里写图片描述
• 基本原理就是用2N+1台 JN 存储EditLog,每次写数据操作有大多数(>=N+1)返回成功时即认为该次写成功,数据不会丢失了。当然这个算法所能容忍的是最多有N台机器挂掉,如果多于N台挂掉,这个算法就失效了。这个原理是基于Paxos算法
• 在HA架构里面SecondaryNameNode这个冷备角色已经不存在了,为了保持standby NN时时的与主Active NN的元数据保持一致,他们之间交互通过一系列守护的轻量级进程JournalNode
• 任何修改操作在 Active NN上执行时,JN进程同时也会记录修改log到至少半数以上的JN中,这时 Standby NN 监测到JN 里面的同步log发生变化了会读取 JN 里面的修改log,然后同步到自己的的目录镜像树里面,如下图:
这里写图片描述
当发生故障时,Active的 NN 挂掉后,Standby NN 会在它成为Active NN 前,读取所有的JN里面的修改日志,这样就能高可靠的保证与挂掉的NN的目录镜像树一致,然后无缝的接替它的职责,维护来自客户端请求,从而达到一个高可用的目的
• QJM方式来实现HA的主要优势:
1. 不需要配置额外的高共享存储,降低了复杂度和维护成本
2. 消除spof
3. 系统鲁棒性(Robust:健壮)的程度是可配置
4. JN不会因为其中一台的延迟而影响整体的延迟,而且也不会因为JN的数量增多而影响性能(因为NN向JN发送日志是并行的)

3 hadoop2.x ha 详述
• datanode的fencing: 确保只有一个NN能命令DN。HDFS-1972中详细描述了DN如何实现fencing
1. 每个NN改变状态的时候,向DN发送自己的状态和一个序列号
2. DN在运行过程中维护此序列号,当failover时,新的NN在返回DN心跳时会返回自己的active状态和一个更大的序列号。DN接收到这个返回则认为该NN为新的active
3. 如果这时原来的active NN恢复,返回给DN的心跳信息包含active状态和原来的序列号,这时DN就会拒绝这个NN的命令
• 客户端fencing:确保只有一个NN能响应客户端请求,让访问standby nn的客户端直接失败。在RPC层封装了一层,通过FailoverProxyProvider以重试的方式连接NN。通过若干次连接一个NN失败后尝试连接新的NN,对客户端的影响是重试的时候增加一定的延迟。客户端可以设置重试此时和时间
• Hadoop提供了ZKFailoverController角色,部署在每个NameNode的节点上,作为一个deamon进程, 简称zkfc,示例图如下:
这里写图片描述
• FailoverController主要包括三个组件:
1. HealthMonitor: 监控NameNode是否处于unavailable或unhealthy状态。当前通过RPC调用NN相应的方法完成
2. ActiveStandbyElector: 管理和监控自己在ZK中的状态
3. ZKFailoverController 它订阅HealthMonitor 和ActiveStandbyElector 的事件,并管理NameNode的状态
• ZKFailoverController主要职责:
1. 健康监测:周期性的向它监控的NN发送健康探测命令,从而来确定某个NameNode是否处于健康状态,如果机器宕机,心跳失败,那么zkfc就会标记它处于一个不健康的状态
2. 会话管理:如果NN是健康的,zkfc就会在zookeeper中保持一个打开的会话,如果NameNode同时还是Active状态的,那么zkfc还会在Zookeeper中占有一个类型为短暂类型的znode,当这个NN挂掉时,这个znode将会被删除,然后备用的NN,将会得到这把锁,升级为主NN,同时标记状态为Active
3. 当宕机的NN新启动时,它会再次注册zookeper,发现已经有znode锁了,便会自动变为Standby状态,如此往复循环,保证高可靠,需要注意,目前仅仅支持最多配置2个NN
4. master选举:如上所述,通过在zookeeper中维持一个短暂类型的znode,来实现抢占式的锁机制,从而判断那个NameNode为Active状态

4 hadoop2.x Federation
• 单Active NN的架构使得HDFS在集群扩展性和性能上都有潜在的问题,当集群大到一定程度后,NN进程使用的内存可能会达到上百G,NN成为了性能的瓶颈
• 常用的估算公式为1G对应1百万个块,按缺省块大小计算的话,大概是64T (这个估算比例是有比较大的富裕的,其实,即使是每个文件只有一个块,所有元数据信息也不会有1KB/block)
• 为了解决这个问题,Hadoop 2.x提供了HDFS Federation, 示意图如下:
这里写图片描述
• 多个NN共用一个集群里的存储资源,每个NN都可以单独对外提供服务
• 每个NN都会定义一个存储池,有单独的id,每个DN都为所有存储池提供存储
• DN会按照存储池id向其对应的NN汇报块信息,同时,DN会向所有NN汇报本地存储可用资源情况
• 如果需要在客户端方便的访问若干个NN上的资源,可以使用客户端挂载表,把不同的目录映射到不同的NN,但NN上必须存在相应的目录
• 设计优势:
1. 改动最小,向前兼容;现有的NN无需任何配置改动;如果现有的客户端只连某台NN的话,代码和配置也无需改动
2. 分离命名空间管理和块存储管理
3. 客户端挂载表:通过路径自动对应NN、使Federation的配置改动对应用透明

5 HDFS HA配置要素
NameNode机器:两台配置对等的物理机器,它们分别运行Active和Standby Node。
JouralNode机器:运行JouralNodes的机器。JouralNode守护进程相当的轻量级,可以和hadoop的其他进程部署在一起,比如NameNode、DataNode、ResourceManager等,至少需要3个且为奇数,如果你运行了N个JNS,那么它可以允许(N-1)/2个JNS进程失效并且不影响工作。
在HA集群中,Standby NameNode还会对namespace进行checkpoint操作(继承Backup Namenode的特性),因此不需要在HA集群中运行SecondaryNameNode、CheckpointNode或者BackupNode。

6 HDFS HA配置参数
需要在hdfs.xml中配置如下参数:
dfs.nameservices:HDFS NN的逻辑名称,例如myhdfs。
dfs.ha.namenodes.myhdfs:给定服务逻辑名称myhdfs的节点列表,如nn1、nn2。
dfs.namenode.rpc-address.myhdfs.nn1:myhdfs中nn1对外服务的RPC地址。
dfs.namenode.http-address.myhdfs.nn1:myhdfs中nn1对外服务http地址。
dfs.namenode.shared.edits.dir:JournalNode的服务地址。
dfs.journalnode.edits.dir:JournalNode在本地磁盘存放数据的位置。
dfs.ha.automatic-failover.enabled:是否开启NameNode失败自动切换。
dfs.ha.fencing.methods :配置隔离机制,通常为sshfence。

7 HDFS自动故障转移
HDFS的自动故障转移主要由Zookeeper和ZKFC两个组件组成。
Zookeeper集群作用主要有:一是故障监控。每个NameNode将会和Zookeeper建立一个持久session,如果NameNode失效,那么此session将会过期失效,此后Zookeeper将会通知另一个Namenode,然后触发Failover;二是NameNode选举。ZooKeeper提供了简单的机制来实现Acitve Node选举,如果当前Active失效,Standby将会获取一个特定的排他锁,那么获取锁的Node接下来将会成为Active。
ZKFC是一个Zookeeper的客户端,它主要用来监测和管理NameNodes的状态,每个NameNode机器上都会运行一个ZKFC程序,它的职责主要有:一是健康监控。ZKFC间歇性的ping NameNode,得到NameNode返回状态,如果NameNode失效或者不健康,那么ZKFS将会标记其为不健康;二是Zookeeper会话管理。当本地NaneNode运行良好时,ZKFC将会持有一个Zookeeper session,如果本地NameNode为Active,它同时也持有一个“排他锁”znode,如果session过期,那么次lock所对应的znode也将被删除;三是选举。当集群中其中一个NameNode宕机,Zookeeper会自动将另一个激活。

8 YARN HA架构
YARN的HA架构和HDFSHA类似,需要启动两个ResourceManager,这两个ResourceManager会向ZooKeeper集群注册,通过ZooKeeper管理它们的状态(Active或Standby)并进行自动故障转移。
这里写图片描述
YARN的HA架构和HDFSHA类似,需要启动两个ResourceManager,这两个ResourceManager会向ZooKeeper集群注册,通过ZooKeeper管理它们的状态(Active或Standby)并进行自动故障转移。

猜你喜欢

转载自blog.csdn.net/yyl424525/article/details/77805379
今日推荐