海量TopK问题

Top K问题在数据分析中非常普遍的一个问题(在面试中也经常被问到),比如:

从20亿个数字的文本中,找出最大的前100个。

以下是一些经常被提及的该类问题。
(1)有10000000个记录,这些查询串的重复度比较高,如果除去重复后,不超过3000000个。一个查询串的重复度越高,说明查询它的用户越多,也就是越热门。请统计最热门的10个查询串,要求使用的内存不能超过1GB。

(2)有10个文件,每个文件1GB,每个文件的每一行存放的都是用户的query,每个文件的query都可能重复。按照query的频度排序。

(3)有一个1GB大小的文件,里面的每一行是一个词,词的大小不超过16个字节,内存限制大小是1MB。返回频数最高的100个词。

(4)提取某日访问网站次数最多的那个IP。

(5)10亿个整数找出重复次数最多的100个整数。

(6)搜索的输入信息是一个字符串,统计300万条输入信息中最热门的前10条,每次输入的一个字符串为不超过255B,内存使用只有1GB。

(7)有1000万个身份证号以及他们对应的数据,身份证号可能重复,找出出现次数最多的身份证号。

eg 有1亿个浮点数,如果找出期中最大的10000个?

先拿10000个数建堆,然后一次添加剩余元素,如果大于堆顶的数(10000中最小的),将这个数替换堆顶,并调整结构使之仍然是一个最小堆,这样,遍历完后,堆中的10000个数就是所需的最大的10000个。建堆时间复杂度是O(mlogm),算法的时间复杂度为O(nmlogm)(n为10亿,m为10000)。

优化的方法:可以把所有10亿个数据分组存放,比如分别放在1000个文件中。这样处理就可以分别在每个文件的10^6个数据中找出最大的10000个数,合并到一起在再找出最终的结果。

另外可行的办法
最容易想到的方法是将数据全部排序,然后在排序后的集合中进行查找,最快的排序算法的时间复杂度一般为O(nlogn),如快速排序。但是在32位的机器上,每个float类型占4个字节,1亿个浮点数就要占用400MB的存储空间,对于一些可用内存小于400M的计算机而言,很显然是不能一次将全部数据读入内存进行排序的。其实即使内存能够满足要求(我机器内存都是8GB),该方法也并不高效,因为题目的目的是寻找出最大的10000个数即可,而排序却是将所有的元素都排序了,做了很多的无用功。

第二种方法为局部淘汰法,该方法与排序方法类似,用一个容器保存前10000个数,然后将剩余的所有数字——与容器内的最小数字相比,如果所有后续的元素都比容器内的10000个数还小,那么容器内这个10000个数就是最大10000个数。如果某一后续元素比容器内最小数字大,则删掉容器内最小元素,并将该元素插入容器,最后遍历完这1亿个数,得到的结果容器中保存的数即为最终结果了。此时的时间复杂度为O(n+m^2),其中m为容器的大小,即10000。

第三种方法是分治法,将1亿个数据分成100份,每份100万个数据,找到每份数据中最大的10000个,最后在剩下的10010000个数据里面找出最大的10000个。如果100万数据选择足够理想,那么可以过滤掉1亿数据里面99%的数据。100万个数据里面查找最大的10000个数据的方法如下:用快速排序的方法,将数据分为2堆,如果大的那堆个数N大于1000个,继续对大堆快速排序一次分成2堆,如果大的那堆个数N大于10000个,继续对大堆快速排序一次分成2堆,如果大堆个数N小于10000个,就在小的那堆里面快速排序一次,找第10000-n大的数字;递归以上过程,就可以找到第1w大的数。参考上面的找出第1w大数字,就可以类似的方法找到前10000大数字了。此种方法需要每次的内存空间为10^64=4MB,一共需要101次这样的比较。

第四种方法是Hash法。如果这1亿个书里面有很多重复的数,先通过Hash法,把这1亿个数字去重复,这样如果重复率很高的话,会减少很大的内存用量,从而缩小运算空间,然后通过分治法或最小堆法查找最大的10000个数。

第五种方法采用最小堆。首先读入前10000个数来创建大小为10000的最小堆,建堆的时间复杂度为O(mlogm)(m为数组的大小即为10000),然后遍历后续的数字,并于堆顶(最小)数字进行比较。如果比最小的数小,则继续读取后续数字;如果比堆顶数字大,则替换堆顶元素并重新调整堆为最小堆。整个过程直至1亿个数全部遍历完为止。然后按照中序遍历的方式输出当前堆中的所有10000个数字。该算法的时间复杂度为O(nmlogm),空间复杂度是10000(常数)

top K问题很适合采用MapReduce框架解决,用户只需编写一个Map函数和两个Reduce 函数,然后提交到Hadoop(采用Mapchain和Reducechain)上即可解决该问题。具体而言,就是首先根据数据值或者把数据hash(MD5)后的值按照范围划分到不同的机器上,最好可以让数据划分后一次读入内存,这样不同的机器负责处理不同的数值范围,实际上就是Map。得到结果后,各个机器只需拿出各自出现次数最多的前N个数据,然后汇总,选出所有的数据中出现次数最多的前N个数据,这实际上就是Reduce过程。对于Map函数,采用Hash算法,将Hash值相同的数据交给同一个Reduce task;对于第一个Reduce函数,采用HashMap统计出每个词出现的频率,对于第二个Reduce 函数,统计所有Reduce task,输出数据中的top K即可。

解决Top K问题有两种思路,

最直观:小顶堆(大顶堆 -> 最小100个数);
较高效:Quick Select算法。
LeetCode上有一个问题215. Kth Largest Element in an Array,类似于Top K问题。


  1. 小顶堆(min-heap)有个重要的性质——每个结点的值均不大于其左右孩子结点的值,则堆顶元素即为整个堆的最小值。JDK中PriorityQueue实现了数据结构堆,通过指定comparator字段来表示小顶堆或大顶堆,默认为null,表示自然序(naturalordering)。

小顶堆解决Top K问题的思路:小顶堆维护当前扫描到的最大100个数,其后每一次的扫描到的元素,若大于堆顶,则入堆,然后删除堆顶;依此往复,直至扫描完所有元素。Java实现第K大整数代码如下:

public int findKthLargest(int[] nums, int k) {
  PriorityQueue<Integer> minQueue = new PriorityQueue<>(k);
  for (int num : nums) {
    if (minQueue.size() < k || num > minQueue.peek())
      minQueue.offer(num);
    if (minQueue.size() > k)
      minQueue.poll();
  }
  return minQueue.peek();
}
  1. Quick Select
    Quick Select [1]脱胎于快排(Quick Sort),两个算法的作者都是Hoare,并且思想也非常接近:选取一个基准元素pivot,将数组切分(partition)为两个子数组,比pivot大的扔左子数组,比pivot小的扔右子数组,然后递推地切分子数组。Quick Select不同于Quick Sort的是其没有对每个子数组做切分,而是对目标子数组做切分。其次,Quick Select与Quick Sort一样,是一个不稳定的算法;pivot选取直接影响了算法的好坏,worst case下的时间复杂度达到了O(n2)。下面给出Quick Sort的Java实现:

      public void quickSort(int arr[], int left, int right) {
           if (left >= right) return;
           int index = partition(arr, left, right);
           quickSort(arr, left, index - 1);
           quickSort(arr, index + 1, right);
         }
           // partition subarray a[left..right] so that a[left..j-1] >= a[j] >= a[j+1..right]
          // and return index j
    private int partition(int arr[], int left, int right) {
           int i = left, j = right + 1, pivot = arr[left];
           while (true) {
             while (i < right && arr[++i] > pivot)
               if (i == right) break;
             while (j > left && arr[--j] < pivot)
               if (j == left) break;
             if (i >= j) break;
             swap(arr, i, j);
           }
           swap(arr, left, j);  // swap pivot and a[j]
           return j;
         }
         
         private void swap(int[] arr, int i, int j) {
           int tmp = arr[i];
           arr[i] = arr[j];
           arr[j] = tmp;
         }
    

Quick Select的目标是找出第k大元素,所以

若切分后的左子数组的长度 > k,则第k大元素必出现在左子数组中;
若切分后的左子数组的长度 = k-1,则第k大元素为pivot;
若上述两个条件均不满足,则第k大元素必出现在右子数组中。
Quick Select的Java实现如下:

public int findKthLargest(int[] nums, int k) {
  return quickSelect(nums, k, 0, nums.length - 1);
}

// quick select to find the kth-largest element
public int quickSelect(int[] arr, int k, int left, int right) {
  if (left == right) return arr[right];
  int index = partition(arr, left, right);
  if (index - left + 1 > k)
    return quickSelect(arr, k, left, index - 1);
  else if (index - left + 1 == k)
    return arr[index];
  else
    return quickSelect(arr, k - index + left - 1, index + 1, right);

}

上面给出的代码都是求解第k大元素;若想要得到Top K元素,仅需要将代码做稍微的修改:比如,扫描完成后的小顶堆对应于Top K,Quick Select算法用中间变量保存Top K元素。

参考链接 https://www.cnblogs.com/qlky/p/7512199.html

猜你喜欢

转载自blog.csdn.net/u013095264/article/details/89358653
今日推荐