公约数

题目地址
看到这题目就不想做了系列,出题人是不是都不知道杜教筛是什么东西啊,他家杜教筛可以预处理优化到\(O(n^\frac{2}{3})\)

先吓唬你一下,我们要求:

\[\sum_{i=1}^n\sum_{j=1}^m\sum_{k=1}^p\gcd(i\cdot j,i\cdot k,j\cdot k)\times \gcd(i,j,k)\times \left(\frac{\gcd(i,j)}{\gcd(i,k)\times \gcd(j,k)}+\frac{\gcd(i,k)}{\gcd(i,j)\times \gcd(j,k)}+\frac{\gcd(j,k)}{\gcd(i,j)\times \gcd(i,k)}\right)\]

我们令\(x = gcd(i, j), y = gcd(i, k), z = gcd(j, k)\)

于是我们有:
\[\sum_{i=1}^n\sum_{j=1}^m\sum_{k=1}^p\gcd(i\cdot j,i\cdot k,j\cdot k)\times \gcd(i,j,k)\times \left(\frac{x}{y\times z}+\frac{y}{x\times z}+\frac{z}{x\times y}\right)\]
\[\sum_{i=1}^n\sum_{j=1}^m\sum_{k=1}^p\gcd(i\cdot j,i\cdot k,j\cdot k)\times \gcd(i,j,k) \times \frac{x ^ 2 + y ^ 2 + z ^ 2}{x \times y \times z}\]

展开第一陀恶心人的柿子,可以得到:
\[gcd(i\cdot j,i\cdot k,j\cdot k) = \frac{x \times y\times z}{gcd(i, j, k)}\]

(证明可以通过唯一分解定理展开)

于是我们惊喜地发现,我们只需要求\((\)还原\(x, y, z)\)

\[\sum_{i=1}^n\sum_{j=1}^m\sum_{k=1}^p gcd(i, j)^2 +gcd(j, k) ^ 2 + gcd(i, k) ^ 2\]

我们把柿子分开写,得到:

\[\sum_{i=1}^n\sum_{j=1}^m\sum_{k=1}^p gcd(i, j)^2+\sum_{i=1}^n\sum_{j=1}^m\sum_{k=1}^pgcd(j, k) ^ 2 +\sum_{i=1}^n\sum_{j=1}^m\sum_{k=1}^p gcd(i, k) ^ 2\]

因为\(gcd(i, j)\)与k无关(其他同理),于是我们可以提出k,变成p个\(\sum_{i=1}^n\sum_{j=1}^m gcd(i, j)^2\)相加,故有:

\[p \times \sum_{i=1}^n\sum_{j=1}^m gcd(i, j)^2+n \times \sum_{j=1}^m\sum_{k=1}^pgcd(j, k) ^ 2 +m \times \sum_{i=1}^n\sum_{k=1}^p gcd(i, k) ^ 2\]

\(F(n, m) = \sum_{i=1}^n\sum_{j=1}^m gcd(i, j)^2\)

原式\(=p \times F(n, m) + n \times F(p, m) + m \times F(n, p)\)

所以问题转化为如何快速的求出\(F(n, m)\)(不妨设\(n ≤ m\)

\[F(n, m) = \sum_{d = 1}^n\sum_{i=1}^n\sum_{j=1}^m d^2 \times [gcd(i, j) == d]\]

\(i, j\)同时除以d得:

\[F(n, m) = \sum_{d = 1} ^ n\sum^{n / d}_{i = 1}\sum^{m / d}_{j = 1} d ^ 2 \times [gcd(i, j) == 1]\]
\[F(n, m) = \sum_{d = 1} ^ nd ^ 2\sum^{n / d}_{i = 1}\sum^{m / d}_{j = 1}\sum_{k|gcd(i, j)} \mu(k)\]

提前枚举K得:

\[F(n, m) = \sum_{d = 1} ^ n d ^ 2\sum_{k = 1}^{n / d}\mu(k)\sum^{n / (d * k)}_{i = 1}\sum^{m / (d * k)}_{j = 1} \]

\[F(n, m) = \sum_{d = 1} ^ n d ^ 2\sum_{k = 1}^{n / d}\mu(k)\left \lfloor \frac{n}{d * k} \right \rfloor \times \left \lfloor \frac{m}{d * k} \right \rfloor\]

跟据反演套路,我们令\(T = d * k\)

\[F(n, m) = \sum_{T = 1}^n \left \lfloor \frac{n}{T} \right \rfloor \times \left \lfloor \frac{m}{T} \right \rfloor\sum_{d | T} d ^ 2\times \mu(\frac{T}{d})\]

\(g(x) = x * x, mu(x) = \mu(x)\)

于是\(F(n, m) = \sum_{T = 1}^n \left \lfloor \frac{n}{T} \right \rfloor \times \left \lfloor \frac{m}{T} \right \rfloor\times(g(x) \times mu(x))\)

发现后面那一堆就是一个卷积的形式,而且是两个积性函数的卷积,于是我们可以用线性筛筛出,筛法见于神之怒加强版

总结一下求法:

我们记\(prim[i]\)为第i个质数,\(low[i]\)为i质因数分解后最小的质因子的指数次幂,\(f[x]\)\(g(x)\)\(mu(x)\)\(mu[x]\)\(\mu(x)\)

类似于线性筛,我们分三种情况讨论:

\(case1:\) \(i\)是质数
我们可以直接算出来:\(low[i] = i,\;\ f[i] = i \times i - 1,\;\ mu[i] = -1\)

\(case2:i \% prim[j] != 0\):这种情况是满足积性函数定义的,即\(i, prim[j]\)互质,令\(p = i \times prim[j]\),所以我们有\(low[p] = prim[j],\;\ mu[p] = -mu[i],\;\ f[i] = f[i] \times f[prim[j]]\)

\(case3:i \% prim[j] == 0\):这种情况不满足积性函数的定义,于是我们考虑用我们刚刚维护的\(low[i]\)

考虑到\(i / low[i],prim[j]\)是互质的,那我们可不可以类比\(case2\)通过\(f[i / low[i]], f[prim[j]]\)来推出\(f[p]\)呢?

假设\(a, b\)互质,我们有:\(f[a \times b] = f[a] \times f[b]\)

所以我们也有:\(f[p] = f[i] \times f[prim[j]] = f[i\ /\ low[i]] \times f[prim[j] \times low[i]]\)

根据定义,\(i\ /\ low[i]\)没有\(prim[j]\)这个约数,所以\(i / low[i],\;\ prim[j] \times low[i]\)互质

i肯定有\(prim[j]\)这个质因数,而且根据线性筛的性质,\(prim[j]\)肯定是i的最小质因数,故我们有\(mu[p] = 0,\;\ low[p] = low[i] \times prim[j]\)

如果\(low[i] < i\),证明\(low[i] \times prim[j] <= i\),故我们可以直接用\(f[p] = f[i\ /\ low[i]] \times f[prim[j] \times low[i]]\)

如果\(low[i] == i\),证明i以前肯定没有被筛过,若\(low[i] = prim[j] ^ k\),则k肯定为质数,那么我们就可以直接用:\(f[p] = (i * prim[j]) ^ 2 - i ^ 2\)

\(ps:\)

写完后看题解才发现:这道题根于神之怒不一样,并不需要记录\(low[i]\),对于\(case3\)\(f[p] = f[i] \times prim[j] ^2\)即可

\(Code:\)

#include<bits/stdc++.h>
using namespace std;
#define il inline
#define re register
il int read() {
    re int x = 0, f = 1; re char c = getchar();
    while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - 48, c = getchar();
    return x * f;
}
#define rep(i, s, t) for(re int i = s; i <= t; ++ i)
#define mod 1000000007
#define maxn 20000007
il int Pow(int x) {return 1ll * x * x % mod;}
int cnt, prim[maxn], f[maxn], mu[maxn], low[maxn];
bool vis[maxn];
il void init() {
    f[1] = mu[1] = 1;
    rep(i, 2, 2e7) {
        if(!vis[i]) f[i] = Pow(i) - 1, mu[i] = -1, low[i] = i, prim[++ cnt] = i;
        for(re int j = 1; j <= cnt; ++ j) {
            if(i * prim[j] > 2e7) break;
            int p = i * prim[j];
            vis[p] = 1;
            if(i % prim[j] == 0) {
                low[p] = low[i] * prim[j];
                if(low[i] == i) f[p] = (Pow(1ll * i * prim[j] % mod) - Pow(i) + mod) % mod;
                else f[p] = 1ll * f[i / low[i]] * f[low[i] * prim[j]] % mod;
                break;
            }
            mu[p] = -mu[i], low[p] = prim[j], f[p] = 1ll * f[i] * f[prim[j]] % mod;
        }
    }
    rep(i, 1, 2e7) f[i] = (f[i - 1] + f[i]) % mod;
}
il int F(int n, int m) {
    if(n > m) swap(n, m);
    int ans = 0;
    for(re int l = 1, r; l <= n; l = r + 1) {
        r = min(n / (n / l), m / (m / l));
        ans = (ans + 1ll * (1ll * (n / l) * (m / l) % mod) * (f[r] - f[l - 1]) % mod) % mod;
    }
    return (ans + mod) % mod;
}
il int get(int n, int m, int p) {
    return ((1ll * p * F(n, m) % mod + 1ll * n * F(p, m) % mod) % mod + 1ll * m * F(n, p)) % mod;
}
il void outit() {
    for(re int i = 1, T = read(); i <= T; ++ i) printf("%d\n", get(read(), read(), read()));
}
int main() {
    init(), outit();
    return 0;
}

猜你喜欢

转载自www.cnblogs.com/bcoier/p/11618366.html