Java高并发编程三--volatile使用及其实现原理

通过前面一章我们了解了synchronized是一个重量级的锁,虽然JVM对它做了很多优化,而下面介绍的volatile则是轻量级的synchronized。如果一个变量使用volatile,则它比使用synchronized的成本更加低,因为它不会引起线程上下文的切换和调度。Java语言规范对volatile的定义如下:

Java编程语言允许线程访问共享变量,为了确保共享变量能被准确和一致地更新,线程应该确保通过排他锁单独获得这个变量。

上面比较绕口,通俗点讲就是说一个变量如果用volatile修饰了,则Java可以确保所有线程看到这个变量的值是一致的,如果某个线程对volatile修饰的共享变量进行更新,那么其他线程可以立马看到这个更新,这就是所谓的线程可见性。volatile虽然看起来比较简单,使用起来无非就是在一个变量前面加上volatile即可,但是要用好并不容易,下面会详细讲到.

一.操作系统语义

计算机在运行程序时,每条指令都是在CPU中执行的,在执行过程中势必会涉及到数据的读写。我们知道程序运行的数据是存储在主存中,这时就会有一个问题,读写主存中的数据没有CPU中执行指令的速度快,如果任何的交互都需要与主存打交道则会大大影响效率,所以就有了CPU高速缓存。CPU高速缓存为某个CPU独有,只与在该CPU运行的线程有关。

有了CPU高速缓存虽然解决了效率问题,但是它会带来一个新的问题:数据一致性。在程序运行中,会将运行所需要的数据复制一份到CPU高速缓存中,在进行运算时CPU不再也主存打交道,而是直接从高速缓存中读写数据,只有当运行结束后才会将数据刷新到主存中。举一个简单的例子:

1

i++i++

当线程运行这段代码时,首先会从主存中读取i( i = 1),然后复制一份到CPU高速缓存中,然后CPU执行 + 1 (2)的操作,然后将数据(2)写入到告诉缓存中,最后刷新到主存中。其实这样做在单线程中是没有问题的,有问题的是在多线程中。如下:

假如有两个线程A、B都执行这个操作(i++),按照我们正常的逻辑思维主存中的i值应该=3,但事实是这样么?分析如下:

两个线程从主存中读取i的值(1)到各自的高速缓存中,然后线程A执行+1操作并将结果写入高速缓存中,最后写入主存中,此时主存i==2,线程B做同样的操作,主存中的i仍然=2。所以最终结果为2并不是3。这种现象就是缓存一致性问题。

解决缓存一致性方案有两种:

扫描二维码关注公众号,回复: 764506 查看本文章
  1. 通过在总线加LOCK#锁的方式
  2. 通过缓存一致性协议

但是方案1存在一个问题,它是采用一种独占的方式来实现的,即总线加LOCK#锁的话,只能有一个CPU能够运行,其他CPU都得阻塞,效率较为低下。

第二种方案,缓存一致性协议(MESI协议)它确保每个缓存中使用的共享变量的副本是一致的。其核心思想如下:当某个CPU在写数据时,如果发现操作的变量是共享变量,则会通知其他CPU告知该变量的缓存行是无效的,因此其他CPU在读取该变量时,发现其无效会重新从主存中加载数据。

二.Java内存模型

上面从操作系统层次阐述了如何保证数据一致性,下面我们来看一下Java内存模型,稍微研究一下Java内存模型为我们提供了哪些保证以及在Java中提供了哪些方法和机制来让我们在进行多线程编程时能够保证程序执行的正确性。

在并发编程中我们一般都会遇到这三个基本概念:原子性、可见性、有序性。我们稍微看下volatile

1.原子性:即一个操作或者多个操作 要么全部执行并且执行的过程不会被任何因素打断,要么就都不执行。

原子性就像数据库里面的事务一样,他们是一个团队,同生共死。其实理解原子性非常简单,我们看下面一个简单的例子即可:

i = 0;        //    ---1
j = i ;       //     ---2
i++;          //  ---3
i = j + 1;   // ---4
/*
上面四个操作,有哪个几个是原子操作,那几个不是?
如果不是很理解,可能会认为都是原子性操作,其实只有1才是原子操作,其余均不是。

1—在Java中,对基本数据类型的变量和赋值操作都是原子性操作;
2—包含了两个操作:读取i,将i值赋值给j
3—包含了三个操作:读取i值、i + 1 、将+1结果赋值给i;
4—同三一样
*/

在单线程环境下我们可以认为整个步骤都是原子性操作,但是在多线程环境下则不同,Java只保证了基本数据类型的变量和赋值操作才是原子性的(注:在32位的JDK环境下,对64位数据的读取不是原子性操作*,如long、double)。要想在多线程环境下保证原子性,则可以通过锁、synchronized来确保。

volatile是无法保证复合操作的原子性

2.可见性是指当多个线程访问同一个变量时,一个线程修改了这个变量的值,其他线程能够立即看得到修改的值。

在上面已经分析了,在多线程环境下,一个线程对共享变量的操作对其他线程是不可见的。

Java提供了volatile来保证可见性。

当一个变量被volatile修饰后,表示着线程本地内存无效,当一个线程修改共享变量后他会立即被更新到主内存中,当其他线程读取共享变量时,它会直接从主内存中读取。
当然,synchronize和锁都可以保证可见性。

3.有序性:即程序执行的顺序按照代码的先后顺序执行。

在Java内存模型中,为了效率是允许编译器和处理器对指令进行重排序,当然重排序它不会影响单线程的运行结果,但是对多线程会有影响。

Java提供volatile来保证一定的有序性。最著名的例子就是单例模式里面的DCL(双重检查锁)。这里LZ就不再阐述了。

三.volatile的使用

要使 volatile 变量提供理想的线程安全,必须同时满足下面两个条件:

  • 对变量的写操作不依赖于当前值。
  • 该变量没有包含在具有其他变量的不变式中。

实际上,这些条件表明,可以被写入 volatile 变量的这些有效值独立于任何程序的状态,包括变量的当前状态。

第一个条件的限制使 volatile 变量不能用作线程安全计数器。虽然增量操作(x++)看上去类似一个单独操作,实际上它是一个由读取-修改-写入操作序列组成的组合操作,必须以原子方式执行,而 volatile 不能提供必须的原子特性。实现正确的操作需要使 x 的值在操作期间保持不变,而 volatile 变量无法实现这点。(然而,如果将值调整为只从单个线程写入,那么可以忽略第一个条件。)

大多数编程情形都会与这两个条件的其中之一冲突,使得 volatile 变量不能像 synchronized 那样普遍适用于实现线程安全。清单 1 显示了一个非线程安全的数值范围类。它包含了一个不变式 —— 下界总是小于或等于上界。

1、防止重排序

package com.zzl.concurrent;

public class Singleton {
    public static volatile Singleton singleton;

    /**
     * 构造函数私有,禁止外部实例化
     */
    private Singleton() {};

    public static Singleton getInstance() {
        if (singleton == null) {
            synchronized (singleton) {
                if (singleton == null) {
                    singleton = new Singleton();
                }
            }
        }
        return singleton;
    }
}
/*
现在我们分析一下为什么要在变量singleton之间加上volatile关键字。
要理解这个问题,先要了解对象的构造过程,实例化一个对象其实可以分为三个步骤:
  (1)分配内存空间。
  (2)初始化对象。
  (3)将内存空间的地址赋值给对应的引用。
但是由于操作系统可以对指令进行重排序,所以上面的过程也可能会变成如下过程:
  (1)分配内存空间。
  (2)将内存空间的地址赋值给对应的引用。
  (3)初始化对象
如果是这个流程,多线程环境下就可能将一个未初始化的对象引用暴露出来,
从而导致不可预料的结果。因此,为了防止这个过程的重排序,我们需要将变量设置为volatile类型的变量。*/

2、实现可见性

package com.zzl.test.concurrent;

public class VolatileTest {
    int a = 1;
    int b = 2;

    public void change(){
        a = 3;
        b = a;
    }

    public void print(){
        System.out.println("b="+b+";a="+a);
    }

    public static void main(String[] args) {
        while (true){
            final VolatileTest test = new VolatileTest();
            new Thread(new Runnable() {
                @Override
                public void run() {
                    try {
                        Thread.sleep(10);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    test.change();
                }
            }).start();

            new Thread(new Runnable() {
                @Override
                public void run() {
                    try {
                        Thread.sleep(10);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    test.print();
                }
            }).start();

        }
    }
}
/* 直观上说,这段代码的结果只可能有两种:b=3;a=3 或 b=2;a=1。
不过运行上面的代码(可能时间上要长一点),你会发现除了上两种结果之外,还出现了第三种结果:

...... 
b=2;a=1
b=2;a=1
b=3;a=3
b=3;a=3
b=3;a=1<<-----
b=3;a=3
b=2;a=1
b=3;a=3
b=3;a=3
......
*/

为什么会出现b=3;a=1这种结果呢?正常情况下,如果先执行change方法,再执行print方法,输出结果应该为b=3;a=3。相反,如果先执行的print方法,再执行change方法,结果应该是 b=2;a=1。那b=3;a=1的结果是怎么出来的?原因就是第一个线程将值a=3修改后,但是对第二个线程是不可见的,所以才出现这一结果。如果将a和b都改成volatile类型的变量再执行,则再也不会出现b=3;a=1的结果了。

3、保证原子性

关于volatile变量对原子性保证,有一个问题容易被误解。现在我们就通过下列程序来演示一下这个问题:

package com.zzl.test.concurrent;

public class VolatileTest01 {
    volatile int i;

    public void addI(){
        i++;
    }

    public static void main(String[] args) throws InterruptedException {
        final  VolatileTest01 test01 = new VolatileTest01();
        for (int n = 0; n < 1000; n++) {
            new Thread(new Runnable() {
                @Override
                public void run() {
                    try {
                        Thread.sleep(10);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    test01.addI();
                }
            }).start();
        }

        Thread.sleep(10000);//等待10秒,保证上面程序执行完成

        System.out.println(test01.i);
    }
}
//大家可能会误认为对变量i加上关键字volatile后,这段程序就是线程安全的。
大家可以尝试运行上面的程序。下面是我本地运行的结果:
978

 可能每个人运行的结果不相同。不过应该能看出,volatile是无法保证原子性的(否则结果应该是1000)。原因也很简单,i++其实是一个复合操作,包括三步骤:

  (1)读取i的值。

  (2)对i加1。

  (3)将i的值写回内存。

volatile是无法保证这三个操作是具有原子性的,我们可以通过AtomicInteger或者Synchronized来保证+1操作的原子性。

注:上面几段代码中多处执行了Thread.sleep()方法,目的是为了增加并发问题的产生几率,无其他作用。

四.volatile原理

  1、可见性实现:

  在前文中已经提及过,线程本身并不直接与主内存进行数据的交互,而是通过线程的工作内存来完成相应的操作。这也是导致线程间数据不可见的本质原因。因此要实现volatile变量的可见性,直接从这方面入手即可。对volatile变量的写操作与普通变量的主要区别有两点:

  (1)修改volatile变量时会强制将修改后的值刷新的主内存中。

  (2)修改volatile变量后会导致其他线程工作内存中对应的变量值失效。因此,再读取该变量值的时候就需要重新从读取主内存中的值。

  通过这两个操作,就可以解决volatile变量的可见性问题。

       2. 禁止指令重排序:

在执行程序时为了提高性能,编译器和处理器通常会对指令做重排序:

  1. 编译器重排序。编译器在不改变单线程程序语义的前提下,可以重新安排语句的执行顺序;
  2. 处理器重排序。如果不存在数据依赖性,处理器可以改变语句对应机器指令的执行顺序;

指令重排序对单线程没有什么影响,他不会影响程序的运行结果,但是会影响多线程的正确性。既然指令重排序会影响到多线程执行的正确性,那么我们就需要禁止重排序。那么JVM是如何禁止重排序的呢?这个问题稍后回答,我们先看另一个原则happens-before,happen-before原则保证了程序的“有序性”,它规定如果两个操作的执行顺序无法从happens-before原则中推到出来,那么他们就不能保证有序性,可以随意进行重排序。其定义如下:

  1. 同一个线程中的,前面的操作 happen-before 后续的操作。(即单线程内按代码顺序执行。但是,在不影响在单线程环境执行结果的前提下,编译器和处理器可以进行重排序,这是合法的。换句话说,这一是规则无法保证编译重排和指令重排)。
  2. 监视器上的解锁操作 happen-before 其后续的加锁操作。(Synchronized 规则)
  3. 对volatile变量的写操作 happen-before 后续的读操作。(volatile 规则)
  4. 线程的start() 方法 happen-before 该线程所有的后续操作。(线程启动规则)
  5. 线程所有的操作 happen-before 其他线程在该线程上调用 join 返回成功后的操作。
  6. 如果 a happen-before b,b happen-before c,则a happen-before c(传递性)。

我们着重看第三点volatile规则:对volatile变量的写操作 happen-before 后续的读操作。为了实现volatile内存语义,JMM会重排序,其规则如下:

这里我们主要看下第三条:volatile变量的保证有序性的规则。《Java并发编程:核心理论》一文中提到过重排序分为编译器重排序和处理器重排序。为了实现volatile内存语义,JMM会对volatile变量限制这两种类型的重排序。下面是JMM针对volatile变量所规定的重排序规则表:

  3、内存屏障

为了实现volatile可见性和happen-befor的语义。JVM底层是通过一个叫做“内存屏障”的东西来完成。内存屏障,也叫做内存栅栏,是一组处理器指令,用于实现对内存操作的顺序限制。下面是完成上述规则所要求的内存屏障:

Required barriers 2nd operation
1st operation Normal Load Normal Store Volatile Load Volatile Store
Normal Load       LoadStore
Normal Store       StoreStore
Volatile Load LoadLoad LoadStore LoadLoad LoadStore
Volatile Store     StoreLoad StoreStore

(1)LoadLoad 屏障
执行顺序:Load1—>Loadload—>Load2
确保Load2及后续Load指令加载数据之前能访问到Load1加载的数据。

(2)StoreStore 屏障
执行顺序:Store1—>StoreStore—>Store2
确保Store2以及后续Store指令执行前,Store1操作的数据对其它处理器可见。

(3)LoadStore 屏障
执行顺序: Load1—>LoadStore—>Store2
确保Store2和后续Store指令执行前,可以访问到Load1加载的数据。

(4)StoreLoad 屏障
执行顺序: Store1—> StoreLoad—>Load2
确保Load2和后续的Load指令读取之前,Store1的数据对其他处理器是可见的。

最后我可以通过一个实例来说明一下JVM中是如何插入内存屏障的:

package com.paddx.test.concurrent;

public class MemoryBarrier {
    int a, b;
    volatile int v, u;

    void f() {
        int i, j;

        i = a;
        j = b;
        i = v;
        //LoadLoad
        j = u;
        //LoadStore
        a = i;
        b = j;
        //StoreStore
        v = i;
        //StoreStore
        u = j;
        //StoreLoad
        i = u;
        //LoadLoad
        //LoadStore
        j = b;
        a = i;
    }
}

五:总结

总体上来说volatile的理解还是比较困难的,如果不是特别理解,也不用急,完全理解需要一个过程,在后续的文章中也还会多次看到volatile的使用场景。这里暂且对volatile的基础知识和原来有一个基本的了解。总体来说,volatile是并发编程中的一种优化,在某些场景下可以代替Synchronized。但是,volatile的不能完全取代Synchronized的位置,只有在一些特殊的场景下,才能适用volatile。总的来说,必须同时满足下面两个条件才能保证在并发环境的线程安全:

  (1)对变量的写操作不依赖于当前值。

  (2)该变量没有包含在具有其他变量的不变式中。

猜你喜欢

转载自my.oschina.net/u/3703858/blog/1623693