这可能是迄今为止HashMap详解写的最全的一篇文章

 

什么是 HashMap?

HashMap 是基于哈希表的 Map 接口的非同步实现。此实现提供所有可选的映射操作,并允许使用 null 值和 null 键。此类不保证映射的顺序,特别是它不保证该顺序恒久不变。

HashMap 的数据结构 在 Java 编程语言中,最基本的结构就是两种,一个是数组,另外一个是模拟指针(引用),所有的数据结构都可以用这两个基本结构来构造的,HashMap 也不例外。HashMap 实际上是一个 “链表散列” 的数据结构,即数组和链表的结合体。

文字描述永远要配上图才能更好的讲解数据结构,HashMap 的结构图如下。

这可能是迄今为止HashMap详解写的最全的一篇文章

从上图中可以看出,HashMap 底层就是一个数组结构,数组中的每一项又是一个链表或者红黑树。当新建一个 HashMap 的时候,就会初始化一个数组。

下面先通过大概看下 HashMap 的核心成员。

publicclassHashMap<K,V> extendsAbstractMap<K,V>  implementsMap<K,V>, Cloneable, Serializable{  // 默认容量,默认为16,必须是2的幂  staticfinalint DEFAULT_INITIAL_CAPACITY = 1<< 4;  // 最大容量,值是2^30  staticfinalint MAXIMUM_CAPACITY = 1<< 30  // 装载因子,默认的装载因子是0.75  staticfinalfloat DEFAULT_LOAD_FACTOR = 0.75f;  // 解决冲突的数据结构由链表转换成树的阈值,默认为8  staticfinalint TREEIFY_THRESHOLD = 8;  // 解决冲突的数据结构由树转换成链表的阈值,默认为6  staticfinalint UNTREEIFY_THRESHOLD = 6;  /* 当桶中的bin被树化时最小的hash表容量。   * 如果没有达到这个阈值,即hash表容量小于MIN_TREEIFY_CAPACITY,当桶中bin的数量太多时会执行resize扩容操作。   * 这个MIN_TREEIFY_CAPACITY的值至少是TREEIFY_THRESHOLD的4倍。   */  staticfinalint MIN_TREEIFY_CAPACITY = 64;  staticclassNode<K,V> implementsMap.Entry<K,V> {    //...  }  // 存储数据的数组  transientNode<K,V>[] table;  // 遍历的容器  transientSet<Map.Entry<K,V>> entrySet;  // Map中KEY-VALUE的数量  transientint size;  /**   * 结构性变更的次数。   * 结构性变更是指map的元素数量的变化,比如rehash操作。   * 用于HashMap快速失败操作,比如在遍历时发生了结构性变更,就会抛出ConcurrentModificationException。   */  transientint modCount;  // 下次resize的操作的size值。  int threshold;  // 负载因子,resize后容量的大小会增加现有size * loadFactor  finalfloat loadFactor;}

HashMap 的初始化

publicHashMap() {    this.loadFactor = DEFAULT_LOAD_FACTOR; // 其他值都是默认值  }

通过源码可以看出初始化时并没有初始化数组 table,那只能在 put 操作时放入了,为什么要这样做?估计是避免初始化了 HashMap 之后不使用反而占用内存吧,哈哈哈。

HashMap 的存储操作

public V put(K key, V value) {    return putVal(hash(key), key, value, false, true);  }

下面我们详细讲一下 HashMap 是如何确定数组索引的位置、进行 put 操作的详细过程以及扩容机制 (resize)

hash 计算,确定数组索引位置

不管增加、删除、查找键值对,定位到哈希桶数组的位置都是很关键的第一步。前面说过 HashMap 的数据结构是数组和链表的结合,所以我们当然希望这个 HashMap 里面的元素位置尽量分布均匀些,尽量使得每个位置上的元素数量只有一个,那么当我们用 hash 算法求得这个位置的时候,马上就可以知道对应位置的元素就是我们要的,不用遍历链表,大大优化了查询的效率。HashMap 定位数组索引位置,直接决定了 hash 方法的离散性能。

看下源码的实现:

staticfinalint hash(Object key) {  //jdk1.8   int h;   // h = key.hashCode() 为第一步 取hashCode值   // h ^ (h >>> 16) 为第二步 高位参与运算   return(key == null) ? 0: (h = key.hashCode()) ^ (h >>> 16);}

通过 hashCode() 的高 16 位异或低 16 位实现的:(h = k.hashCode()) ^ (h >>> 16),主要是从速度、功效、质量来考虑的,这么做可以在数组 table 的 length 比较小的时候,也能保证考虑到高低 Bit 都参与到 Hash 的计算中,同时不会有太大的开销。

大家都知道上面代码里的 key.hashCode() 函数调用的是 key 键值类型自带的哈希函数,返回 int 型散列值。理论上散列值是一个 int 型,如果直接拿散列值作为下标访问 HashMap 主数组的话,考虑到 2 进制 32 位带符号的 int 表值范围从‑2147483648 到 2147483648。前后加起来大概 40 亿的映射空间。

只要哈希函数映射得比较均匀松散,一般应用是很难出现碰撞的。但问题是一个 40 亿长度的数组,内存是放不下的。你想,HashMap 扩容之前的数组初始大小才 16。所以这个散列值是不能直接拿来用的。用之前还要先做对数组的长度取模运算,得到的余数才能用来访问数组下标。源码中模运算是在这个 indexFor( ) 函数里完成。

bucketIndex = indexFor(hash, table.length);//indexFor的代码也很简单,就是把散列值和数组长度做一个"与"操作,staticint indexFor(int h, int length) {  return h & (length-1);}

顺便说一下,这也正好解释了为什么 HashMap 的数组长度要取 2 的整次幂。因为这样(数组长度‑1)正好相当于一个 “低位掩码”。“与” 操作的结果就是散列值的高位全部归零,只保留低位值,用来做数组下标访问。以初始长度 16 为例,16‑1=15。2 进制表示是 00000000 0000000000001111。和某散列值做 “与” 操作如下,结果就是截取了最低的四位值。

101001011100010000100101& 000000000000000000001111---------------------------------- 000000000000000000000101//高位全部归零,只保留末四位

但这时候问题就来了,这样就算我的散列值分布再松散,要是只取最后几位的话,碰撞也会很严重。更要命的是如果散列本身做得不好,分布上成等差数列的漏洞,恰好使最后几个低位呈现规律性重复,就无比蛋疼。这时候 “扰动函数” 的价值就出来了,说到这大家应该都明白了,看下图。

这可能是迄今为止HashMap详解写的最全的一篇文章

右位移 16 位,正好是 32bit 的一半,自己的高半区和低半区做异或,就是为了混合原始哈希码的高位和低位,以此来加大低位的随机性。而且混合后的低位掺杂了高位的部分特征,这样高位的信息也被变相保留下来。

putVal 方法

HashMap 的 put 方法执行过程可以通过下图来理解,自己有兴趣可以去对比源码更清楚地研究学习。

这可能是迄今为止HashMap详解写的最全的一篇文章

源码以及解释如下:

// 真正的put操作  final V putVal(int hash, K key, V value, boolean onlyIfAbsent,          boolean evict) {    Node<K,V>[] tab; Node<K,V> p; int n, i;    // 如果table没有初始化,或者初始化的大小为0,进行resize操作    if((tab = table) == null|| (n = tab.length) == 0)      n = (tab = resize()).length;    // 如果hash值对应的桶内没有数据,直接生成结点并且把结点放入桶中    if((p = tab[i = (n - 1) & hash]) == null)      tab[i] = newNode(hash, key, value, null);    // 如果hash值对应的桶内有数据解决冲突,再放入桶中    else{      Node<K,V> e; K k;      //判断put的元素和已经存在的元素是相同(hash一致,并且equals返回true)      if(p.hash == hash &&        ((k = p.key) == key || (key != null&& key.equals(k))))        e = p;      // put的元素和已经存在的元素是不相同(hash一致,并且equals返回true)      // 如果桶内元素的类型是TreeNode,也就是解决hash解决冲突用的树型结构,把元素放入树种      elseif(p instanceofTreeNode)        e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);      else{        // 桶内元素的类型不是TreeNode,而是链表时,把数据放入链表的最后一个元素上        for(int binCount = 0; ; ++binCount) {          if((e = p.next) == null) {            p.next= newNode(hash, key, value, null);            // 如果链表的长度大于转换为树的阈值(TREEIFY_THRESHOLD),将存储元素的数据结构变更为树            if(binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st              treeifyBin(tab, hash);            break;          }          // 如果查已经存在key,停止遍历          if(e.hash == hash &&            ((k = e.key) == key || (key != null&& key.equals(k))))            break;          p = e;        }      }      // 已经存在元素时      if(e != null) { // existing mapping for key        V oldValue = e.value;        if(!onlyIfAbsent || oldValue == null)          e.value = value;        afterNodeAccess(e);        return oldValue;      }    }    ++modCount;    // 如果K-V数量大于阈值,进行resize操作    if(++size > threshold)      resize();    afterNodeInsertion(evict);    returnnull;  }

扩容机制

HashMap 的扩容机制用的很巧妙,以最小的性能来完成扩容。扩容后的容量就变成了变成了之前容量的 2 倍,初始容量为 16,所以经过 rehash 之后,元素的位置要么是在原位置,要么是在原位置再向高下标移动上次容量次数的位置,也就是说如果上次容量是 16,下次扩容后容量变成了 16+16,如果一个元素在下标为 7 的位置,下次扩容时,要不还在 7 的位置,要不在 7+16 的位置。

我们下面来解释一下 Java8 的扩容机制是怎么做到的?n 为 table 的长度,图(a)表示扩容前的 key1 和 key2 两种 key 确定索引位置的示例,图(b)表示扩容后 key1 和 key2 两种 key 确定索引位置的示例,其中 hash1 是 key1 对应的哈希与高位运算结果。

这可能是迄今为止HashMap详解写的最全的一篇文章

元素在重新计算 hash 之后,因为 n 变为 2 倍,那么 n-1 的 mask 范围在高位多 1bit(红色),因此新的 index 就会发生这样的变化:

这可能是迄今为止HashMap详解写的最全的一篇文章

因此,我们在扩充 HashMap 的时候,不需要像 JDK1.7 的实现那样重新计算 hash,只需要看看原来的 hash 值新增的那个 bit 是 1 还是 0 就好了,是 0 的话索引没变,是 1 的话索引变成 “原索引 + oldCap”,可以看看下图为 16 扩充为 32 的 resize 示意图:

这可能是迄今为止HashMap详解写的最全的一篇文章

而 hash 值的高位是否为 1,只需要和扩容后的长度做与操作就可以了,因为扩容后的长度为 2 的次幂,所以高位必为 1,低位必为 0,如 10000 这种形式,源码中有 e.hash & oldCap 来做到这个逻辑。

这个设计确实非常的巧妙,既省去了重新计算 hash 值的时间,而且同时,由于新增的 1bit 是 0 还是 1 可以认为是随机的,因此 resize 的过程,均匀的把之前的冲突的节点分散到新的 bucket 了。这一块就是 JDK1.8 新增的优化点。有一点注意区别,JDK1.7 中 rehash 的时候,旧链表迁移新链表的时候,如果在新表的数组索引位置相同,则链表元素会倒置,但是从上图可以看出,JDK1.8 不会倒置。下面是 JDK1.8 的 resize 源码,写的很赞,如下: 

finalNode<K,V>[] resize() {    Node<K,V>[] oldTab = table;    int oldCap = (oldTab == null) ? 0: oldTab.length;    int oldThr = threshold;    int newCap, newThr = 0;    // 计算新的容量值和下一次要扩展的容量    if(oldCap > 0) {    // 超过最大值就不再扩充了,就只好随你碰撞去吧      if(oldCap >= MAXIMUM_CAPACITY) {        threshold = Integer.MAX_VALUE;        return oldTab;      }      // 没超过最大值,就扩充为原来的2倍      elseif((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&           oldCap >= DEFAULT_INITIAL_CAPACITY)        newThr = oldThr << 1; // double threshold    }    elseif(oldThr > 0) // initial capacity was placed in threshold      newCap = oldThr;    else{        // zero initial threshold signifies using defaults      newCap = DEFAULT_INITIAL_CAPACITY;      newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);    }    // 计算新的resize上限    if(newThr == 0) {      float ft = (float)newCap * loadFactor;      newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?           (int)ft : Integer.MAX_VALUE);    }    threshold = newThr;    @SuppressWarnings({"rawtypes","unchecked"})      Node<K,V>[] newTab = (Node<K,V>[])newNode[newCap];    table = newTab;    if(oldTab != null) {      // 把每个bucket都移动到新的buckets中      for(int j = 0; j < oldCap; ++j) {        Node<K,V> e;        //如果位置上没有元素,直接为null        if((e = oldTab[j]) != null) {          oldTab[j] = null;          //如果只有一个元素,新的hash计算后放入新的数组中          if(e.next== null)            newTab[e.hash & (newCap - 1)] = e;          //如果是树状结构,使用红黑树保存          elseif(e instanceofTreeNode)            ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);          //如果是链表形式          else{ // preserve order            Node<K,V> loHead = null, loTail = null;            Node<K,V> hiHead = null, hiTail = null;            Node<K,V> next;            do{              next= e.next;              //hash碰撞后高位为0,放入低Hash值的链表中              if((e.hash & oldCap) == 0) {                if(loTail == null)                  loHead = e;                else                  loTail.next= e;                loTail = e;              }              //hash碰撞后高位为1,放入高Hash值的链表中              else{                if(hiTail == null)                  hiHead = e;                else                  hiTail.next= e;                hiTail = e;              }            } while((e = next) != null);            // 低hash值的链表放入数组的原始位置            if(loTail != null) {              loTail.next= null;              newTab[j] = loHead;            }            // 高hash值的链表放入数组的原始位置 + 原始容量            if(hiTail != null) {              hiTail.next= null;              newTab[j + oldCap] = hiHead;            }          }        }      }    }    return newTab;  }

 马上新年了,小编在这里提前助大家新年快乐哦,小编总结了很多大厂的面试题,一起备战金三银四拿下高薪;想要获取的小伙伴点击【面试】即可获取哦,放出部分截图给小伙伴们看下。

面试题汇总

电子书文档

发布了161 篇原创文章 · 获赞 37 · 访问量 9727

猜你喜欢

转载自blog.csdn.net/Sqdmn/article/details/104030482