五种进程或线程同步互斥的控制方法

五种进程或线程同步互斥的控制方法

  • 临界区: 通过对多线程的串行化来访问公共资源或一段代码,速度快,适合控制数据访问。
  • 互斥量/互斥锁: 为协调共同对一个共享资源的单独访问而设计的;因为进入内核模式,所以性能比临界区差;跨进程。
  • 自旋锁: 一种互斥锁的实现,等待的时候会占用CPU,通过循环判断锁是否被释放,因此比较快速,但是一直占用CPU时间。
  • 信号量: 为控制一个具有有限数量用户资源而设计,互斥锁可以理解为1个用户资源的信号量。
  • 事 件: 用来通知线程有一些事件已发生,从而启动后继任务的开始。

一、互斥锁(mutex)

    在多任务操作系统中,同时运行的多个任务可能都需要使用同一种资源。比如说,同一个文件,可能一个线程会对其进行写操作,而另一个线程需要对这个文件进行读操作,可想而知,如果写线程还没有写结束,而此时读线程开始了,或者读线程还没有读结束而写线程开始了,那么最终的结果显然会是混乱的。为了保护共享资源,在线程里也有这么一把锁——互斥锁(mutex),互斥锁是一种简单的加锁的方法来控制对共享资源的访问,互斥锁只有两种状态,即上锁( lock )和解锁( unlock )。

    C++多线程:互斥锁https://blog.csdn.net/qq_28114615/article/details/88367016
    c++线程中的几种锁: https://blog.csdn.net/bian_qing_quan11/article/details/73734157

二、临界区(Critical Section)

    保证在某一时刻只有一个线程能访问数据的简便办法。在任意时刻只允许一个线程对共享资源进行访问。如果有多个线程试图同时访问临界区,那么在有一个线程进入后其他所有试图访问此临界区的线程将被挂起,并一直持续到进入临界区的线程离开。临界区在被释放后,其他线程可以继续抢占,并以此达到用原子方式操 作共享资源的目的。

三、信号量(Semaphores)

    信号量对象对线程的同步方式与前面几种方法不同,信号允许多个线程同时使用共享资源 ,这与操作系统中的PV操作相同。它指出了同时访问共享 资源的线程 最大数目。它允许多个线程在同一时刻访问同一资源,但是需要限制在同一时刻访问此资源的最大线程数目。在用CreateSemaphore()创建信号量 时即要同时指出允许的最大资源计数和当前可用资源计数。一般是将当前可用资源计数设置为最大资源计数,每增加一个线程对共享资源的访问,当前可用资源计数 就会减1,只要当前可用资源计数是大于0的,就可以发出信号量信号。但是当前可用计数减小到0时则说明当前占用资源的线程数已经达到了所允许的最大数目, 不能在允许其他线程的进入,此时的信号量信号将无法发出。线程在处理完共享资源后,应在离开的同时通过ReleaseSemaphore()函数将当前可 用资源计数加1。在任何时候当前可用资源计数决不可能大于最大资源计数。

四、事件(Event)

    事件对象也可以通过通知操作的方式来保持线程的同步。并且可以实现不同进程中的线程同步操作。

五、总结

  • 互斥量与临界区的作用非常相似,但互斥量是可以命名的,也就是说它可以跨越进程使用。所以创建互斥量需要的资源更多,所以如果只为了在进程内部是用的话使用临界区会带来速度上的优势并能够减少资源占用量 。因为互斥量是跨进程的互斥量一旦被创建,就可以通过名字打开它。
  • 互斥量(Mutex),信号灯(Semaphore),事件(Event)都可以被跨越进程使用来进行同步数据操作,而其他的对象与数据同步操作无关,但对于进程和线程来讲,如果进程和线程在运行状态则为无信号状态,在退出后为有信号状态。所以可以使用WaitForSingleObject来等待进程和 线程退出。
  • 通过互斥量可以指定资源被独占的方式使用,但如果有下面一种情况通过互斥量就无法处理,比如现在一位用户购买了一份三个并发访问许可的数据库系统,可以根据用户购买的访问许可数量来决定有多少个线程/进程能同时进行数据库操作,这时候如果利用互斥量就没有办法完成这个要求,信号灯对象可以说是一种资源计数器。

关于更详细的一篇介绍,请看这里:http://www.cppblog.com/killsound/archive/2009/07/15/16147.html

发布了25 篇原创文章 · 获赞 7 · 访问量 2129

猜你喜欢

转载自blog.csdn.net/qq_41506111/article/details/102839206