哈密顿算子重要性质

  • 重要公式
    ( A × B ) = B × A A × B \triangledown \cdot(\vec A \times \vec B)= \vec B \cdot \triangledown \times\vec A-\vec A\cdot\triangledown\times\vec B
  • 证明
    = x e x + y e y + z e z \triangledown=\frac{\partial}{\partial x}\vec e_x+\frac{\partial }{\partial y}\vec e_y+\frac{\partial }{\partial z}\vec e_z
    A × B = e x e y e z A x A y A z B x B y B z = ( A y B z A z B y ) e x + ( A z B x A x B z ) e y + ( A x B y A y B x ) e z \vec A \times \vec B=\left | \begin{matrix} \vec e_x &\vec e_y &\vec e_z\\ A_x & A_y & A_z\\ B_x & B_y & B_z \end{matrix} \right |\\ =(A_yB_z-A_zB_y)\vec e_x+(A_zB_x-A_xB_z)\vec e_y+(A_xB_y-A_yB_x)\vec e_z
    ( A × B ) = ( x e x + y e y + z e z ) ( ( A y B z A z B y ) e x + ( A z B x A x B z ) e y + ( A x B y A y B x ) e z ) = ( A y B z A z B y ) x + ( A z B x A x B z ) y + ( A x B y A y B x ) z = x y z A x A y A z B x B y B z \triangledown \cdot(\vec A \times \vec B)=(\frac{\partial}{\partial x}\vec e_x+\frac{\partial }{\partial y}\vec e_y+\frac{\partial }{\partial z}\vec e_z) \cdot\bigg((A_yB_z-A_zB_y)\vec e_x+(A_zB_x-A_xB_z)\vec e_y+(A_xB_y-A_yB_x)\vec e_z\bigg)\\ =\frac{\partial{(A_yB_z-A_zB_y)}}{\partial x}+\frac{\partial{(A_zB_x-A_xB_z)}}{\partial y}+\frac{\partial{(A_xB_y-A_yB_x)}}{\partial z}\\ =\left | \begin{matrix} \frac{\partial}{\partial x}&\frac{\partial }{\partial y}&\frac{\partial }{\partial z}\\ A_x & A_y & A_z\\ B_x & B_y & B_z \end{matrix} \right |\\

B × A A × B = B e x e y e z x y z A x A y A z A e x e y e z x y z B x B y B z = ( B x e x + B y e y + B z e z ) ( ( A z y A y z ) e x + ( A x z A z x ) e y + ( A y x A x y ) e z ) ( A x e x + A y e y + A z e z ) ( ( B z y B y z ) e x + ( B x z B z x ) e y + ( B y x B x y ) e z ) = B x ( A z y A y z ) + B y ( A x z A z x ) + B z ( A y x A x y ) ( A x ( B z y B y z ) + A y ( B x z B z x ) + A z ( B y x B x y ) ) B z A y x B y A z x + A y B z x A z B y x = ( B z A y x + A y B z x ) ( B y A z x + A z B y x ) = ( A y B z ) x ( A z B y ) x = ( A y B z A z B y ) x \vec B \cdot \triangledown \times\vec A-\vec A\cdot\triangledown\times\vec B=\vec B \cdot \left | \begin{matrix} \vec e_x &\vec e_y &\vec e_z\\ \frac{\partial}{\partial x}&\frac{\partial }{\partial y}&\frac{\partial }{\partial z}\\ A_x & A_y & A_z \end{matrix} \right | - \vec A \cdot \left | \begin{matrix} \vec e_x &\vec e_y &\vec e_z\\ \frac{\partial}{\partial x}&\frac{\partial }{\partial y}&\frac{\partial }{\partial z}\\ B_x & B_y & B_z \end{matrix}\right | \\ = (B_x\vec e_x+B_y\vec e_y+B_z\vec e_z)\cdot\bigg( (\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z})\vec e_x+(\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x})\vec e_y+(\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y})\vec e_z \bigg)\\ -(A_x\vec e_x+A_y\vec e_y+A_z\vec e_z)\cdot\bigg( (\frac{\partial B_z}{\partial y}-\frac{\partial B_y}{\partial z})\vec e_x+(\frac{\partial B_x}{\partial z}-\frac{\partial B_z}{\partial x})\vec e_y+(\frac{\partial B_y}{\partial x}-\frac{\partial B_x}{\partial y})\vec e_z \bigg)\\ =B_x( \frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z})+ B_y(\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x})+ B_z(\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y})\\ -\bigg(A_x( \frac{\partial B_z}{\partial y}-\frac{\partial B_y}{\partial z})+ A_y(\frac{\partial B_x}{\partial z}-\frac{\partial B_z}{\partial x})+ A_z(\frac{\partial B_y}{\partial x}-\frac{\partial B_x}{\partial y})\bigg)\\ \because B_z\frac{\partial A_y}{\partial x}-B_y\frac{\partial A_z}{\partial x}+ A_y\frac{\partial B_z}{\partial x}- A_z\frac{\partial B_y}{\partial x}= \bigg(B_z\frac{\partial A_y}{\partial x}+ A_y\frac{\partial B_z}{\partial x}\bigg)-\bigg(B_y\frac{\partial A_z}{\partial x}+A_z\frac{\partial B_y}{\partial x} \bigg)\\ =\frac{\partial( A_yB_z)}{\partial x}-\frac{\partial( A_zB_y)}{\partial x}=\frac{\partial( A_yB_z-A_zB_y)}{\partial x}

  • 同理其他三项可得,证毕
发布了251 篇原创文章 · 获赞 28 · 访问量 5万+

猜你喜欢

转载自blog.csdn.net/xiong_xin/article/details/102313206