机器学习之路:python k近邻回归 预测波士顿房价

python3 学习机器学习api

使用两种k近邻回归模型 分别是 平均k近邻回归 和 距离加权k近邻回归 进行预测

git: https://github.com/linyi0604/MachineLearning

代码:

 1 from sklearn.datasets import load_boston
 2 from sklearn.cross_validation import train_test_split
 3 from sklearn.preprocessing import StandardScaler
 4 from sklearn.neighbors import KNeighborsRegressor
 5 from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error
 6 import numpy as np
 7 
 8 # 1 准备数据
 9 # 读取波士顿地区房价信息
10 boston = load_boston()
11 # 查看数据描述
12 # print(boston.DESCR)   # 共506条波士顿地区房价信息,每条13项数值特征描述和目标房价
13 # 查看数据的差异情况
14 # print("最大房价:", np.max(boston.target))   # 50
15 # print("最小房价:",np.min(boston.target))    # 5
16 # print("平均房价:", np.mean(boston.target))   # 22.532806324110677
17 
18 x = boston.data
19 y = boston.target
20 
21 # 2 分割训练数据和测试数据
22 # 随机采样25%作为测试 75%作为训练
23 x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25, random_state=33)
24 
25 
26 # 3 训练数据和测试数据进行标准化处理
27 ss_x = StandardScaler()
28 x_train = ss_x.fit_transform(x_train)
29 x_test = ss_x.transform(x_test)
30 
31 ss_y = StandardScaler()
32 y_train = ss_y.fit_transform(y_train.reshape(-1, 1))
33 y_test = ss_y.transform(y_test.reshape(-1, 1))
34 
35 # 4 两种k近邻回归行学习和预测
36 # 初始化k近邻回归模型 使用平均回归进行预测
37 uni_knr = KNeighborsRegressor(weights="uniform")
38 # 训练
39 uni_knr.fit(x_train, y_train)
40 # 预测 保存预测结果
41 uni_knr_y_predict = uni_knr.predict(x_test)
42 
43 # 多初始化k近邻回归模型 使用距离加权回归
44 dis_knr = KNeighborsRegressor(weights="distance")
45 # 训练
46 dis_knr.fit(x_train, y_train)
47 # 预测 保存预测结果
48 dis_knr_y_predict = dis_knr.predict(x_test)
49 
50 # 5 模型评估
51 # 平均k近邻回归 模型评估
52 print("平均k近邻回归的默认评估值为:", uni_knr.score(x_test, y_test))
53 print("平均k近邻回归的R_squared值为:", r2_score(y_test, uni_knr_y_predict))
54 print("平均k近邻回归的均方误差为:", mean_squared_error(ss_y.inverse_transform(y_test),
55                                               ss_y.inverse_transform(uni_knr_y_predict)))
56 print("平均k近邻回归 的平均绝对误差为:", mean_absolute_error(ss_y.inverse_transform(y_test),
57                                                  ss_y.inverse_transform(uni_knr_y_predict)))
58 # 距离加权k近邻回归 模型评估
59 print("距离加权k近邻回归的默认评估值为:", dis_knr.score(x_test, y_test))
60 print("距离加权k近邻回归的R_squared值为:", r2_score(y_test, dis_knr_y_predict))
61 print("距离加权k近邻回归的均方误差为:", mean_squared_error(ss_y.inverse_transform(y_test),
62                                            ss_y.inverse_transform(dis_knr_y_predict)))
63 print("距离加权k近邻回归的平均绝对误差为:", mean_absolute_error(ss_y.inverse_transform(y_test),
64                                               ss_y.inverse_transform(dis_knr_y_predict)))
65 
66 '''
67 平均k近邻回归的默认评估值为: 0.6903454564606561
68 平均k近邻回归的R_squared值为: 0.6903454564606561
69 平均k近邻回归的均方误差为: 24.01101417322835
70 平均k近邻回归 的平均绝对误差为: 2.9680314960629928
71 距离加权k近邻回归的默认评估值为: 0.7197589970156353
72 距离加权k近邻回归的R_squared值为: 0.7197589970156353
73 距离加权k近邻回归的均方误差为: 21.730250160926044
74 距离加权k近邻回归的平均绝对误差为: 2.8050568785108005
75 '''

猜你喜欢

转载自www.cnblogs.com/Lin-Yi/p/8971947.html

相关文章