Paxos算法-维基百科

Paxos算法[编辑]

维基百科,自由的百科全书
Paxos算法 莱斯利·兰伯特 (英语:Leslie Lamport, LaTeX 中的“La”)于1990年提出的一种基于消息传递且具有高度容错特性的一致性算法。 [1]

问题和假设[编辑]

分布式系统中的节点通信存在两种模型: 共享内存 (Shared memory)和 消息传递 (Messages passing)。基于消息传递通信模型的分布式系统,不可避免的会发生以下错误:进程可能会慢、被杀死或者重启,消息可能会延迟、丢失、重复,在基础Paxos场景中,先不考虑可能出现消息篡改即 拜占庭错误 的情况。Paxos算法解决的问题是在一个可能发生上述异常的 分布式系统 中如何就某个值达成一致,保证不论发生以上任何异常,都不会破坏决议的一致性。一个典型的场景是,在一个分布式数据库系统中,如果各节点的初始状态一致,每个节点都执行相同的操作序列,那么他们最后能得到一个一致的状态。为保证每个节点执行相同的命令序列,需要在每一条指令上执行一个“一致性算法”以保证每个节点看到的指令一致。一个通用的一致性算法可以应用在许多场景中,是分布式计算中的重要问题。因此从20世纪80年代起对于一致性算法的研究就没有停止过。
为描述Paxos算法,Lamport虚拟了一个叫做Paxos的 希腊城邦 ,这个岛按照议会民主制的政治模式制订法律,但是没有人愿意将自己的全部时间和精力放在这种事情上。所以无论是议员,议长或者传递纸条的服务员都不能承诺别人需要时一定会出现,也无法承诺批准决议或者传递消息的时间。但是这里假设没有 拜占庭将军问题 (Byzantine failure,即虽然有可能一个消息被传递了两次,但是绝对不会出现错误的消息);只要等待足够的时间,消息就会被传到。另外,Paxos岛上的议员是不会反对其他议员提出的决议的。
对应于分布式系统,议员对应于各个节点,制定的法律对应于系统的状态。各个节点需要进入一个一致的状态,例如在独立 Cache 对称多处理器 系统中,各个处理器读内存的某个字节时,必须读到同样的一个值,否则系统就违背了一致性的要求。一致性要求对应于法律条文只能有一个版本。议员和服务员的不确定性对应于节点和消息传递通道的不可靠性。

算法[编辑]

算法的提出与证明[编辑]

首先将议员的角色分为proposers,acceptors,和learners(允许身兼数职)。proposers提出提案,提案信息包括提案编号和提议的value;acceptor收到提案后可以接受(accept)提案,若提案获得多数acceptors的接受,则称该提案被批准(chosen);learners只能“学习”被批准的提案。划分角色后,就可以更精确的定义问题:
  1. 决议(value)只有在被proposers提出后才能被批准(未经批准的决议称为“提案(proposal)”);
  2. 在一次Paxos算法的执行实例中,只批准(chosen)一个value;
  3. learners只能获得被批准(chosen)的value。
另外还需要保证progress。这一点以后再讨论。
作者通过不断加强上述3个约束(主要是第二个)获得了Paxos算法。
批准value的过程中,首先proposers将value发送给acceptors,之后acceptors对value进行接受(accept)。为了满足只批准一个value的约束,要求经“多数派(majority)”接受的value成为正式的决议(称为“批准”决议)。这是因为无论是按照人数还是按照权重划分,两组“多数派”至少有一个公共的acceptor,如果每个acceptor只能接受一个value,约束2就能保证。
于是产生了一个显而易见的新约束:

P1:一个acceptor必须接受(accept)第一次收到的提案。
注意P1是不完备的。如果恰好一半acceptor接受的提案具有value A,另一半接受的提案具有value B,那么就无法形成多数派,无法批准任何一个value。
约束2并不要求只批准一个提案,暗示可能存在多个提案。只要提案的value是一样的,批准多个提案不违背约束2。于是可以产生约束P2:

P2:一旦一个具有value v的提案被批准(chosen),那么之后批准(chosen)的提案必须具有value v。
注:通过某种方法可以为每个提案分配一个编号,在提案之间建立一个全序关系,所谓“之后”都是指所有编号更大的提案。
如果P1和P2都能够保证,那么约束2就能够保证。
批准一个value意味着多个acceptor接受(accept)了该value.因此,可以对P2进行加强:

P2a:一旦一个具有value v的提案被批准(chosen),那么之后任何acceptor再次接受(accept)的提案必须具有value v。
由于通信是异步的,P2a和P1会发生冲突。如果一个value被批准后,一个proposer和一个acceptor从休眠中苏醒,前者提出一个具有新的value的提案。根据P1,后者应当接受,根据P2a,则不应当接受,这中场景下P2a和P1有矛盾。于是需要换个思路,转而对proposer的行为进行约束:

P2b:一旦一个具有value v的提案被批准(chosen),那么以后任何proposer提出的提案必须具有value v。
由于acceptor能接受的提案都必须由proposer提出,所以P2b蕴涵了P2a,是一个更强的约束。
但是根据P2b难以提出实现手段。因此需要进一步加强P2b。
假设一个编号为m的value v已经获得批准(chosen),来看看在什么情况下对任何编号为n(n>m)的提案都含有value v。因为m已经获得批准(chosen),显然存在一个acceptors的多数派C,他们都接受(accept)了v。考虑到任何多数派都和C具有至少一个公共成员,可以找到一个蕴涵P2b的约束P2c:

P2c:如果一个编号为n的提案具有value v,那么存在一个多数派,要么他们中所有人都没有接受(accept)编号小于n
的任何提案,要么他们已经接受(accept)的所有编号小于n的提案中编号最大的那个提案具有value v。
可以用 数学归纳法 证明P2c蕴涵P2b:
假设具有value v的提案m获得批准,当n=m+1时,采用反证法,假如提案n不具有value v,而是具有value w,根据P2c,则存在一个多数派S1,要么他们中没有人接受过编号小于n的任何提案,要么他们已经接受的所有编号小于n的提案中编号最大的那个提案是value w。由于S1和通过提案m时的多数派C之间至少有一个公共的acceptor,所以以上两个条件都不成立,导出矛盾从而推翻假设,证明了提案n必须具有value v;
若(m+1)..(N-1)所有提案都具有value v,采用反证法,假如新提案N不具有value v,而是具有value w',根据P2c,则存在一个多数派S2,要么他们没有接受过m..(N-1)中的任何提案,要么他们已经接受的所有编号小于N的提案中编号最大的那个提案是value w'。由于S2和通过m的多数派C之间至少有一个公共的acceptor,所以至少有一个acceptor曾经接受了m,从而也可以推出S2中已接受的所有编号小于n的提案中编号最大的那个提案的编号范围在m..(N-1)之间,而根据初始假设,m..(N-1)之间的所有提案都具有value v,所以S2中已接受的所有编号小于n的提案中编号最大的那个提案肯定具有value v,导出矛盾从而推翻新提案n不具有value v的假设。根据数学归纳法,我们证明了若满足P2c,则P2b一定满足。
P2c是可以通过消息传递模型实现的。另外,引入了P2c后,也解决了前文提到的P1不完备的问题。

算法的内容[编辑]

要满足P2c的约束,proposer提出一个提案前,首先要和足以形成多数派的acceptors进行通信,获得他们进行的最近一次接受(accept)的提案(prepare过程),之后根据回收的信息决定这次提案的value,形成提案开始投票。当获得多数acceptors接受(accept)后,提案获得批准(chosen),由proposer将这个消息告知learner。这个简略的过程经过进一步细化后就形成了Paxos算法。
在一个paxos实例中,每个提案需要有不同的编号,且编号间要存在全序关系。可以用多种方法实现这一点,例如将序数和proposer的名字拼接起来。如何做到这一点不在Paxos算法讨论的范围之内。
如果一个没有chosen过任何proposer提案的acceptor在prepare过程中回答了一个proposer针对提案n的问题,但是在开始对n进行投票前,又接受(accept)了编号小于n的另一个提案(例如n-1),如果n-1和n具有不同的value,这个投票就会违背P2c。因此在prepare过程中,acceptor进行的回答同时也应包含承诺:不会再接受(accept)编号小于n的提案。这是对P1的加强:

P1a:当且仅当acceptor没有回应过编号大于n的prepare请求时,acceptor接受(accept)编号为n的提案。
现在已经可以提出完整的算法了。

决议的提出与批准[编辑]

通过一个决议分为两个阶段:
  1. prepare阶段:
    1. proposer选择一个提案编号n并将prepare请求发送给acceptors中的一个多数派;
    2. acceptor收到prepare消息后,如果提案的编号大于它已经回复的所有prepare消息,则acceptor将自己上次接受的提案回复给proposer,并承诺不再回复小于n的提案;
  2. 批准阶段:
    1. 当一个proposer收到了多数acceptors对prepare的回复后,就进入批准阶段。它要向回复prepare请求的acceptors发送accept请求,包括编号n和根据P2c决定的value(如果根据P2c没有已经接受的value,那么它可以自由决定value)。
    2. 在不违背自己向其他proposer的承诺的前提下,acceptor收到accept请求后即接受这个请求。
这个过程在任何时候中断都可以保证正确性。例如如果一个proposer发现已经有其他proposers提出了编号更高的提案,则有必要中断这个过程。因此为了优化,在上述prepare过程中,如果一个acceptor发现存在一个更高编号的提案,则需要通知proposer,提醒其中断这次提案。

实例[编辑]

用实际的例子来更清晰地描述上述过程:
有A1, A2, A3, A4, A5 5位议员,就税率问题进行决议。议员A1决定将税率定为10%,因此它向所有人发出一个草案。这个草案的内容是:

现有的税率是什么?如果没有决定,则建议将其定为10%.时间:本届议会第3年3月15日;提案者:A1
在最简单的情况下,没有人与其竞争;信息能及时顺利地传达到其它议员处。
于是, A2-A5回应:

我已收到你的提案,等待最终批准
而A1在收到2份回复后就发布最终决议:

税率已定为10%,新的提案不得再讨论本问题。
这实际上退化为 二阶段提交 协议。
现在我们假设在A1提出提案的同时, A5决定将税率定为20%:

现有的税率是什么?如果没有决定,则建议将其定为20%.时间:本届议会第3年3月15日;提案者:A5
草案要通过侍从送到其它议员的案头. A1的草案将由4位侍从送到A2-A5那里。现在,负责A2和A3的侍从将草案顺利送达,负责A4和A5的侍从则不上班. A5的草案则顺利的送至A3和A4手中。
现在, A1, A2, A3收到了A1的提案; A3, A4, A5收到了A5的提案。按照协议, A1, A2, A4, A5将接受他们收到的提案,侍从将拿着

我已收到你的提案,等待最终批准
的回复回到提案者那里。
而A3的行为将决定批准哪一个。
情况一[编辑]
假设A1的提案先送到A3处,而A5的侍从决定放假一段时间。于是A3接受并派出了侍从. A1等到了两位侍从,加上它自己已经构成一个多数派,于是税率10%将成为决议. A1派出侍从将决议送到所有议员处:

税率已定为10%,新的提案不得再讨论本问题。
A3在很久以后收到了来自A5的提案。由于税率问题已经讨论完毕,他决定不再理会。但是他要抱怨一句:

税率已在之前的投票中定为10%,你不要再来烦我!
这个回复对A5可能有帮助,因为A5可能因为某种原因很久无法与与外界联系了。当然更可能对A5没有任何作用,因为A5可能已经从A1处获得了刚才的决议。
情况二[编辑]
依然假设A1的提案先送到A3处,但是这次A5的侍从不是放假了,只是中途耽搁了一会。这次, A3依然会将"接受"回复给A1.但是在决议成型之前它又收到了A5的提案。这时协议有两种处理方式:
1.如果A5的提案更早,按照传统应该由较早的提案者主持投票。现在看来两份提案的时间一样(本届议会第3年3月15日)。但是A5是个惹不起的大人物。于是A3回复:

我已收到您的提案,等待最终批准,但是您之前有人提出将税率定为10%,请明察。
于是, A1和A5都收到了足够的回复。这时关于税率问题就有两个提案在同时进行。但是A5知道之前有人提出税率为10%.于是A1和A5都会向全体议员广播:

税率已定为10%,新的提案不得再讨论本问题。
一致性得到了保证。
2. A5是个无足轻重的小人物。这时A3不再理会他, A1不久后就会广播税率定为10%.
情况三[编辑]
在这个情况中,我们将看见,根据提案的时间及提案者的权势决定是否应答是有意义的。在这里,时间和提案者的权势就构成了给提案编号的依据。这样的编号符合"任何两个提案之间构成偏序"的要求。
A1和A5同样提出上述提案,这时A1可以正常联系A2和A3; A5也可以正常联系这两个人。这次A2先收到A1的提案; A3则先收到A5的提案. A5更有权势。
在这种情况下,已经回答A1的A2发现有比A1更有权势的A5提出了税率20%的新提案,于是回复A5说:

我已收到您的提案,等待最终批准。
而回复了A5的A3发现新的提案者A1是个小人物,不予理会。
A1没有达到多数,A5达到了,于是A5将主持投票,决议的内容是A5提出的税率20%.
如果A3决定平等地对待每一位议员,对A1做出"你之前有人提出将税率定为20%"的回复,则将造成混乱。这种情况下A1和A5都将试图主持投票,但是这次两份提案的内容不同。
这种情况下, A3若对A1进行回复,只能说:

有更大的人物关注此事,请等待他做出决定。
另外,在这种情况下, A4与外界失去了联系。等到他恢复联系,并需要得知税率情况时,他(在最简单的协议中)将提出一个提案:

现有的税率是什么?如果没有决定,则建议将其定为15%.时间:本届议会第3年4月1日;提案者:A4
这时,(在最简单的协议中)其他议员将会回复:

税率已在之前的投票中定为20%,你不要再来烦我!

决议的发布[编辑]

一个显而易见的方法是当acceptors批准一个value时,将这个消息发送给所有learner。但是这个方法会导致消息量过大。
由于假设没有Byzantine failures,learners可以通过别的learners获取已经通过的决议。因此acceptors只需将批准的消息发送给指定的某一个learner,其他learners向它询问已经通过的决议。这个方法降低了消息量,但是指定learner失效将引起系统失效。
因此acceptors需要将accept消息发送给learners的一个子集,然后由这些learners去通知所有learners。
但是由于消息传递的不确定性,可能会没有任何learner获得了决议批准的消息。当learners需要了解决议通过情况时,可以让一个proposer重新进行一次提案。注意一个learner可能兼任proposer。

Progress的保证[编辑]

根据上述过程当一个proposer发现存在编号更大的提案时将终止提案。这意味着提出一个编号更大的提案会终止之前的提案过程。如果两个proposer在这种情况下都转而提出一个编号更大的提案,就可能陷入活锁,违背了Progress的要求。这种情况下的解决方案是选举出一个leader,仅允许leader提出提案。但是由于消息传递的不确定性,可能有多个proposer自认为自己已经成为leader。Lamport在 The Part-Time Parliament 一文中描述并解决了这个问题。

其他[编辑]

微软公司 为简化的Paxos算法申请了 专利 [2] 。但专利中公开的技术和本文所描述的不尽相同。
谷歌公司 (Google公司)在其 分布式锁服务 (Chubby lock)中应用了Paxos算法 [3] 。Chubby lock应用于 大表 (Bigtable),后者在 谷歌公司 所提供的各项服务中得到了广泛的应用 [4]

参考文献[编辑]

注:这是该算法第一次公开发表。
注:Lamport觉得同行无法接受他的幽默感,于是用容易接受的方法重新表述了一遍。
  1. ^ Lamport本人在http://research.microsoft.com/users/lamport/pubs/pubs.html#lamport-paxos 中描写了他用9年时间发表这个算法的前前后后
  2. ^ 中国专利局的相关页面
  3. ^ The Chubby lock service for loosely-coupled distributed systems
  4. ^ Bigtable: A Distributed Storage System for Structured Data

猜你喜欢

转载自blog.csdn.net/qq_23603437/article/details/79932638