HashMap 源码分析与总结

HashMap 源码分析与总结

1、HashMap 概述

(1)HashMap基于哈希表的Map接口实现,是以key-value存储形式存在。(除了不同步和允许使用 null 之外,HashMap 类与 Hashtable 大致相同。)

(2)HashMap 的实现不是同步的,这意味着它不是线程安全的。它的key、value都可以为null。此外,HashMap中的映射不是有序的。在 JDK1.8 中,HashMap 是由 数组+链表+红黑树构成,新增了红黑树作为底层数据结构,结构变得复杂了,但是效率也变的更高效。
(3)类的继承关系图
在这里插入图片描述
(4)Map<K,V>:在AbstractMap抽象类中已经实现过的接口,这里又实现,实际上是多余的。但每个集合都有这样的错误,也没过大影响

(5)Cloneable:能够使用Clone()方法,在HashMap中,实现的是浅层次拷贝,即对拷贝对象的改变会影响被拷贝的对象。

(6)Serializable:能够使之序列化,即可以将HashMap对象保存至本地,之后可以恢复状态。

2、HashMap 数据结构和原理

2.1 数据结构

(1)HashMap在JDK1.8以前,HashMap是采用数组+链表的链表散列结构存储的;即下图的上半部分;
(2)但在JDK 1.8后,HashMap是采用数组+链表+红黑树的结构存储的,引进红黑树的目的主要是为了提高查找效率。
在这里插入图片描述

2.2 实现原理

(1)HashMap内部有一个entry的内部类

static class Entry<K,V> implements Map.Entry<K,V> {
            final K key;    //就是我们说的map的key
            V value;    //value值,这两个都不陌生
            Entry<K,V> next;//指向下一个entry对象
            int hash;//通过key算过来的你hashcode值。
 }

物理模型:
在这里插入图片描述
(2)储存的主要过程
1、通过key、value封装成一个entry对象;
2、通过key的值来计算该entry的hash值;
3、通过entry的hash值和数组的长度length来计算出entry放在数组中的哪个位置上面
4、每次存放都是将entry放在第一个位置。在这个过程中,就是通过hash值来确定将该对象存放在数组中的哪个位置上。

3、HashMap 属性

查看源代码,属性的解析如下:

public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable {
    // 序列号
    private static final long serialVersionUID = 362498820763181265L;    
    // 默认的初始容量是16
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;   
    // 最大容量
    static final int MAXIMUM_CAPACITY = 1 << 30; 
    // 默认的填充因子
    static final float DEFAULT_LOAD_FACTOR = 0.75f;
    // 当桶(bucket)上的结点数大于这个值时会转成红黑树
    static final int TREEIFY_THRESHOLD = 8; 
    // 当桶(bucket)上的结点数小于这个值时树转链表
    static final int UNTREEIFY_THRESHOLD = 6;
    // 桶中结构转化为红黑树对应的table的最小大小
    static final int MIN_TREEIFY_CAPACITY = 64;
    // 存储元素的数组,总是2的幂次倍
    transient Node<k,v>[] table; 
    // 存放具体元素的集
    transient Set<map.entry<k,v>> entrySet;
    // 存放元素的个数,注意这个不等于数组的长度。
    transient int size;
    // 每次扩容和更改map结构的计数器
    transient int modCount;   
    // 临界值 当实际大小(容量*填充因子)超过临界值时,会进行扩容
    int threshold;
    // 填充因子
    final float loadFactor;
}

(1)初始容量:哈希表中桶的数量
(2)加载因子:哈希表在其容量自动增加之前可以达到多满的一种尺度;
(3)当哈希表中条目数超出了当前容量*加载因子(其实就是HashMap的实际容量)时,则对该哈希表进行rehash操作,将哈希表扩充至两倍的桶数。
(4)桶:根据前面画的HashMap存储的数据结构图,你这样想,数组中每一个位置上都放有一个桶,每个桶里就是装一个链表,链表中可以有很多个元素(entry),这就是桶的意思。也就相当于把元素都放在桶中。
(5)capacity:capacity译为容量代表的数组的容量,也就是数组的长度,同时也是HashMap中桶的个数。默认值是16。

扫描二维码关注公众号,回复: 9442373 查看本文章

一般第一次扩容时会扩容到64,之后好像是2倍。总之,容量都是2的幂。
(6)size的含义:size就是在该HashMap的实例中实际存储的元素的个数
(7)threshold的作用:threshold = capacity * loadFactor,当Size>=threshold的时候,那么就要考虑对数组的扩增了,也就是说,这个的意思就是衡量数组是否需要扩增的一个标准
  注意这里说的是考虑,因为实际上要扩增数组,除了这个size>=threshold条件外,还需要另外一个条件。
  什么时候会扩增数组的大小?在put一个元素时先size>=threshold并且还要在对应数组位置上有元素,这才能扩增数组。)

4、HashMap 构造方法

(1)HashMap()
构造一个空的 HashMap,默认初始容量(16)和默认负载因子(0.75)

public HashMap() {
        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
    }

(2)HashMap(int initialCapacity)
构造一个空的 HashMap具有指定的初始容量和默认负载因子(0.75)

public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }

(3) HashMap(int initialCapacity, float loadFactor)
构造一个空的 HashMap具有指定的初始容量和负载因子

public HashMap(int initialCapacity, float loadFactor) {
    // 初始容量不能小于0,否则报错
    if (initialCapacity < 0)
        throw new IllegalArgumentException("Illegal initial capacity: " +
                                            initialCapacity);
    // 初始容量不能大于最大值,否则为最大值
    if (initialCapacity > MAXIMUM_CAPACITY)
        initialCapacity = MAXIMUM_CAPACITY;
    // 填充因子不能小于或等于0,不能为非数字
    if (loadFactor <= 0 || Float.isNaN(loadFactor))
        throw new IllegalArgumentException("Illegal load factor: " +
                                            loadFactor);
    // 初始化填充因子                                        
    this.loadFactor = loadFactor;
    // 初始化threshold大小
    this.threshold = tableSizeFor(initialCapacity);    
}

(4)HashMap(Map<? extends K, ? extends V> m)
带有Map集合参数的构造方法

public HashMap(Map<? extends K, ? extends V> m) {
    // 初始化填充因子
    this.loadFactor = DEFAULT_LOAD_FACTOR;
    // 将m中的所有元素添加至HashMap中
    putMapEntries(m, false);
} 

5、方法

(1)put方法

public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }
    
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    // table未初始化或者长度为0,进行扩容
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
    // (n - 1) & hash 确定元素存放在哪个桶中,桶为空,新生成结点放入桶中(此时,这个结点是放在数组中)
    if ((p = tab[i = (n - 1) & hash]) == null)
        tab[i] = newNode(hash, key, value, null);
    // 桶中已经存在元素
    else {
        Node<K,V> e; K k;
        // 比较桶中第一个元素(数组中的结点)的hash值相等,key相等
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
                // 将第一个元素赋值给e,用e来记录
                e = p;
        // hash值不相等,即key不相等;为红黑树结点
        else if (p instanceof TreeNode)
            // 放入树中
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        // 为链表结点
        else {
            // 在链表最末插入结点
            for (int binCount = 0; ; ++binCount) {
                // 到达链表的尾部
                if ((e = p.next) == null) {
                    // 在尾部插入新结点
                    p.next = newNode(hash, key, value, null);
                    // 结点数量达到阈值,转化为红黑树
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        treeifyBin(tab, hash);
                    // 跳出循环
                    break;
                }
                // 判断链表中结点的key值与插入的元素的key值是否相等
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    // 相等,跳出循环
                    break;
                // 用于遍历桶中的链表,与前面的e = p.next组合,可以遍历链表
                p = e;
            }
        }
        // 表示在桶中找到key值、hash值与插入元素相等的结点
        if (e != null) { 
            // 记录e的value
            V oldValue = e.value;
            // onlyIfAbsent为false或者旧值为null
            if (!onlyIfAbsent || oldValue == null)
                //用新值替换旧值
                e.value = value;
            // 访问后回调
            afterNodeAccess(e);
            // 返回旧值
            return oldValue;
        }
    }
    // 结构性修改
    ++modCount;
    // 实际大小大于阈值则扩容
    if (++size > threshold)
        resize();
    // 插入后回调
    afterNodeInsertion(evict);
    return null;
}

(2)get 方法

public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }
final Node<K,V> getNode(int hash, Object key) {
    Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
    // table已经初始化,长度大于0,根据hash寻找table中的项也不为空
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (first = tab[(n - 1) & hash]) != null) {
        // 桶中第一项(数组元素)相等
        if (first.hash == hash && // always check first node
            ((k = first.key) == key || (key != null && key.equals(k))))
            return first;
        // 桶中不止一个结点
        if ((e = first.next) != null) {
            // 为红黑树结点
            if (first instanceof TreeNode)
                // 在红黑树中查找
                return ((TreeNode<K,V>)first).getTreeNode(hash, key);
            // 否则,在链表中查找
            do {
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            } while ((e = e.next) != null);
        }
    }
    return null;
}

(3)resize方法 扩容方法

final Node<K,V>[] resize() {
    // 当前table保存
    Node<K,V>[] oldTab = table;
    // 保存table大小
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    // 保存当前阈值 
    int oldThr = threshold;
    int newCap, newThr = 0;
    // 之前table大小大于0
    if (oldCap > 0) {
        // 之前table大于最大容量
        if (oldCap >= MAXIMUM_CAPACITY) {
            // 阈值为最大整形
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
        // 容量翻倍,使用左移,效率更高
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
            oldCap >= DEFAULT_INITIAL_CAPACITY)
            // 阈值翻倍
            newThr = oldThr << 1; // double threshold
    }
    // 之前阈值大于0
    else if (oldThr > 0)
        newCap = oldThr;
    // oldCap = 0并且oldThr = 0,使用缺省值(如使用HashMap()构造函数,之后再插入一个元素会调用resize函数,会进入这一步)
    else {           
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    // 新阈值为0
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr;
    @SuppressWarnings({"rawtypes","unchecked"})
    // 初始化table
    Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    table = newTab;
    // 之前的table已经初始化过
    if (oldTab != null) {
        // 复制元素,重新进行hash
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null;
                if (e.next == null)
                    newTab[e.hash & (newCap - 1)] = e;
                else if (e instanceof TreeNode)
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else { // preserve order
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    // 将同一桶中的元素根据(e.hash & oldCap)是否为0进行分割,分成两个不同的链表,完成rehash
                    do {
                        next = e.next;
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}

resize()

可见:
进行扩容,会伴随着一次重新hash分配,并且会遍历hash表中所有的元素,是非常耗时的。在编写程序中,要尽量避免resize。

发布了20 篇原创文章 · 获赞 11 · 访问量 587

猜你喜欢

转载自blog.csdn.net/qqq3117004957/article/details/104535574