Zookeeper介绍以及使用

Zookeeper介绍以及使用

1、介绍

  • Zookeeper是一个分布式协调服务的开源框架。主要用来解决分布式集群中应用系统的一致性问题。
  • Zookeeper本质上是一个分布式的小文件存储系统。提供基于类似于文件系统的目录树方式的数据存储,并且可以对树中的节点进行有效管理。从而用来维护和监控存储的数据的状态变化。通过监控这些数据状态的变化,从而可以达到基于数据的集群管理。

2、特性

  1. 全局数据一致:集群中每个服务器保存一份相同的数据副本,client无论连接到哪个服务器,展示的数据都是一致的,这是最重要的特征;
  2. 可靠性:如果消息被其中一台服务器接受,那么将被所有的服务器接受。
  3. 顺序性:包括全局有序和偏序两种:全局有序是指如果在一台服务器上消息a在消息b前发布,则在所有Server上消息a都将在消息b前被发布;偏序是指如果一个消息b在消息a后被同一个发送者发布,a必将排在b前面。
  4. 数据更新原子性:一次数据更新要么成功(半数以上节点成功),要么失败,不存在中间状态;
  5. 实时性:Zookeeper保证客户端将在一个时间间隔范围内获得服务器的更新信息,或者服务器失效的信息。

3、集群角色

在这里插入图片描述
Leader:Zookeeper集群工作的核心
事务请求(写操作)的唯一调度和处理者,保证集群事务处理的顺序性;集群内部各个服务器的调度者。对于create,setData,delete等有写操作的请求,则需要统一转发给leader处理,leader需要决定编号、执行操作,这个过程称为一个事务。
Follower:处理客户端非事务(读操作)请求,转发事务请求给Leader;参与集群Leader选举投票。此外,针对访问量比较大的zookeeper集群,还可新增观察者角色。
Observer:观察者角色,观察Zookeeper集群的最新状态变化并将这些状态同步过来,其对于非事务请求可以进行独立处理,对于事务请求,则会转发给Leader服务器进行处理。
不会参与任何形式的投票只提供非事务服务,通常用于在不影响集群事务处理能力的前提下提升集群的非事务处理能力。

4、shell

进入命令行:zkCli.sh
创建节点:create [-s] [-e] path data acl
其中,-s或-e分别指定节点特性,顺序或临时节点,若不指定,则表示持久节点;acl用来进行权限控制。
读取节点:ls path [watch]
   get path [watch]
 ls命令可以列出Zookeeper指定节点下的所有子节点,只能查看指定节点下的第一级的所有子节点;get命令可以获取Zookeeper指定节点的数据内容和属性信息。
更新节点:set path data [version]
删除节点:delete path [version]
递归删除:Rmr path
对节点增加限制:set quota -n|-b val path
n:表示子节点的最大个数 b:表示数据值的最大长度
val:子节点最大个数或数据值的最大长度 path:节点路径
列出历史命令:history

5、数据模型

ZooKeeper的数据模型,在结构上和标准文件系统的非常相似,拥有一个层次的命名空间,都是采用树形层次结构,ZooKeeper树中的每个节点被称为—Znode。和文件系统的目录树一样,ZooKeeper树中的每个节点可以拥有子节点。

  1. Znode兼具文件和目录两种特点
  2. Znode具有原子性操作
  3. Znode存储数据大小有限制
  4. Znode通过路径引用

6、节点类型

Znode有两种,分别为临时节点永久节点
节点的类型在创建时即被确定,并且不能改变。

临时节点:该节点的生命周期依赖于创建它们的会话。一旦会话结束,临时节点将被自动删除,当然可以也可以手动删除。临时节点不允许拥有子节点。

永久节点:该节点的生命周期不依赖于会话,并且只有在客户端显示执行删除操作的时候,他们才能被删除。

Znode还有一个序列化的特性,如果创建的时候指定的话,该Znode的名字后面会自动追加一个不断增加的序列号。序列号对于此节点的父节点来说是唯一的,这样便会记录每个子节点创建的先后顺序。

这样便会存在四种类型的Znode节点,分别对应:
PERSISTENT:永久节点
EPHEMERAL:临时节点
PERSISTENT_SEQUENTIAL:永久节点、序列化
EPHEMERAL_SEQUENTIAL:临时节点、序列化

7、节点属性

在这里插入图片描述
dataVersion:数据版本号,每次对节点进行set操作,dataVersion的值都会增加1(即使设置的是相同的数据),可有效避免了数据更新时出现的先后顺序问题。
cversion :子节点的版本号。当znode的子节点有变化时,cversion 的值就会增加1。
cZxid :Znode创建的事务id。
mZxid :Znode被修改的事务id,即每次对znode的修改都会更新mZxid。
对于zk来说,每次的变化都会产生一个唯一的事务id,zxid(ZooKeeper Transaction Id)。通过zxid,可以确定更新操作的先后顺序。例如,如果zxid1小于zxid2,说明zxid1操作先于zxid2发生,zxid对于整个zk都是唯一的,即使操作的是不同的znode。
ctime:节点创建时的时间戳.
mtime:节点最新一次更新发生时的时间戳.
ephemeralOwner:如果该节点为临时节点, ephemeralOwner值表示与该节点绑定的session id. 如果不是, ephemeralOwner值为0.

8、Watcher监听机制

ZooKeeper中,引入了Watcher机制来实现这种分布式的通知功能。ZooKeeper允许客户端向服务端注册一个Watcher监听,当服务端的一些事件触发了这个Watcher,那么就会向指定客户端发送一个事件通知来实现分布式的通知功能。
总的来说可以概括Watcher为以下三个过程:客户端向服务端注册Watcher、服务端事件发生触发Watcher、客户端回调Watcher得到触发事件情况
设置watcher : 例:get /test watcher

9、Java API

public static void main(String[] args) throws Exception {
        // 初始化 ZooKeeper实例(zk地址、会话超时时间,与系统默认一致、watcher)
        ZooKeeper zk = new ZooKeeper("node-1:2181,node-2:2181", 30000, new Watcher() {
            @Override
            public void process(WatchedEvent event) {
                System.out.println("事件类型为:" + event.getType());
                System.out.println("事件发生的路径:" + event.getPath());
                System.out.println("通知状态为:" +event.getState());
            }
        });
	zk.create("/myGirls", "性感的".getBytes("UTF-8"), Ids.OPEN_ACL_UNSAFE,
		 CreateMode.PERSISTENT);
      zk.close();
public static void main(String[] args) throws Exception {
        // 初始化 ZooKeeper实例(zk地址、会话超时时间,与系统默认一致、watcher)
        ZooKeeper zk = new ZooKeeper("node-21:2181,node-22:2181", 30000, new Watcher() {
            @Override
            public void process(WatchedEvent event) {
                System.out.println("事件类型为:" + event.getType());
                System.out.println("事件发生的路径:" + event.getPath());
                System.out.println("通知状态为:" +event.getState());
            }
        });
    // 创建一个目录节点
 zk.create("/testRootPath", "testRootData".getBytes(), Ids.OPEN_ACL_UNSAFE,
   CreateMode.PERSISTENT); 
 // 创建一个子目录节点
 zk.create("/testRootPath/testChildPathOne", "testChildDataOne".getBytes(),
   Ids.OPEN_ACL_UNSAFE,CreateMode.PERSISTENT); 
 System.out.println(new String(zk.getData("/testRootPath",false,null))); 
 // 取出子目录节点列表
 System.out.println(zk.getChildren("/testRootPath",true)); 
 // 修改子目录节点数据
 zk.setData("/testRootPath/testChildPathOne","modifyChildDataOne".getBytes(),-1); 
 System.out.println("目录节点状态:["+zk.exists("/testRootPath",true)+"]"); 
 // 创建另外一个子目录节点
 zk.create("/testRootPath/testChildPathTwo", "testChildDataTwo".getBytes(), 
   Ids.OPEN_ACL_UNSAFE,CreateMode.PERSISTENT); 
 System.out.println(new String(zk.getData("/testRootPath/testChildPathTwo",true,null))); 
 // 删除子目录节点
 zk.delete("/testRootPath/testChildPathTwo",-1); 
 zk.delete("/testRootPath/testChildPathOne",-1); 
 // 删除父目录节点
 zk.delete("/testRootPath",-1);
 zk.close();
}

10、选举机制

zookeeper默认的算法是FastLeaderElection,采用投票数大于半数则胜出的逻辑。
全新集群选举
假设目前有5台服务器,每台服务器均没有数据,它们的编号分别是1,2,3,4,5,按编号依次启动,它们的选择举过程如下:

  • 服务器1启动,给自己投票,然后发投票信息,由于其它机器还没有启动所以它收不到反馈信息,服务器1的状态一直属于Looking。
  • 服务器2启动,给自己投票,同时与之前启动的服务器1交换结果,由于服务器2的编号大所以服务器2胜出,但此时投票数没有大于半数,所以两个服务器的状态依然是LOOKING。
  • 服务器3启动,给自己投票,同时与之前启动的服务器1,2交换信息,由于服务器3的编号最大所以服务器3胜出,此时投票数正好大于半数,所以服务器3成为领导者,服务器1,2成为小弟。
  • 服务器4启动,给自己投票,同时与之前启动的服务器1,2,3交换信息,尽管服务器4的编号大,但之前服务器3已经胜出,所以服务器4只能成为小弟。
  • 服务器5启动,后面的逻辑同服务器4成为小弟。

非全新集群选举
对于运行正常的zookeeper集群,中途有机器down掉,需要重新选举时,选举过程就需要加入数据ID、服务器ID和逻辑时钟。
数据ID:数据新的version就大,数据每次更新都会更新version。
服务器ID:就是我们配置的myid中的值,每个机器一个。
逻辑时钟:这个值从0开始递增,每次选举对应一个值。 如果在同一次选举中,这个值是一致的。
这样选举的标准就变成:
1、逻辑时钟小的选举结果被忽略,重新投票;
2、统一逻辑时钟后,数据id大的胜出;
3、数据id相同的情况下,服务器id大的胜出;
根据这个规则选出leader。

发布了14 篇原创文章 · 获赞 12 · 访问量 816

猜你喜欢

转载自blog.csdn.net/qq_45094921/article/details/104537755
今日推荐