STM32学习笔记-GPIO使用超强总结

STM32 GPIO使用超强总结

1 GPIO使用步骤
1.1. 使能GPIO对应的外设时钟
例如://使能GPIOA、GPIOB、GPIOC对应的外设时钟

RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA |RCC_APB2Periph_GPIOB |
RCC_APB2Periph_GPIOC , ENABLE);

1.2. 声明一个GPIO_InitStructure结构体 ​

例如:

GPIO_InitTypeDef GPIO_InitStructure;

1.3. 选择待设置的GPIO管脚

例如://选择待设置的GPIO第7、8、9管脚位 ,中间加“|”符号

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7 |GPIO_Pin_8 | GPIO_Pin_9;

1.4. 设置选中GPIO管脚的速率

例如://设置选中GPIO管脚的速率为最高速率2MHz

GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;//最高速率2MHz

1.5. 设置选中GPIO管脚的模式

例如://设置选中GPIO管脚的模式为开漏输出模式

GPIO_InitStructure.GPIO_Mode= GPIO_Mode_Out_OD;
//开漏输出模式

1.6. 根据GPIO_InitStructure中指定的参数初始化外设GPIOX

例如:

 GPIO_Init(GPIOC,&GPIO_InitStructure);

1.7.其他应用

例: 将端口GPIOA的第10、15脚置1(高电平)

GPIO_SetBits(GPIOA,GPIO_Pin_10| GPIO_Pin_15);

例:将端口GPIOA的第10、15脚置0(低电平)

GPIO_ResetBits(GPIOA,GPIO_Pin_10| GPIO_Pin_15);

2. GPIO操作说明

2.1 库函数: 函数GPIO_DeInit

功能描述:将外设GPIOx寄存器重设为缺省值
例:

GPIO_DeInit(GPIOA);

2.2 函数GPIO_AFIODeInit

功能描述:将复用功能(重映射事件控制和EXTI设置)重设为缺省值
例:

GPIO_AFIODeInit();

2.3 函数GPIO_Init

功能描述:根据GPIO_InitStruct中指定的参数初始化外设GPIOx寄存器

例:

GPIO_InitTypeDefGPIO_InitStructure; 

GPIO_InitStructure.GPIO_Pin= GPIO_Pin_All;
 

GPIO_InitStructure.GPIO_Speed=
GPIO_Speed_10MHz; 

GPIO_InitStructure.GPIO_Mode=
GPIO_Mode_IN_FLOATING;  

GPIO_Init(GPIOA,&GPIO_InitStructure);​

2.3.1 GPIO_InitTypeDefstructure

GPIO_InitTypeDef定义于文件“stm32f10x_gpio.h”:

typedef struct  {​

u16GPIO_Pin;

GPIOSpeed_TypeDefGPIO_Speed;  

GPIOMode_TypeDefGPIO_Mode;
 

}GPIO_InitTypeDef;

2.3.2 GPIO_Pin

该参数选择待设置的GPIO管脚,使用操作符“|”可以一次选中多个管脚。可以使用下表中的任意组合。

GPIO_Pin_None:     无管脚被选中  

GPIO_Pin_x:          选中管脚x(0--15)

GPIO_Pin_All:        选中全部管脚

2.3.3 GPIO_Speed ​

用以设置选中管脚的速率。

GPIO_Speed_10MHz: 最高输出速率10MHz 

GPIO_Speed_2MHz:  最高输出速率2MHz

GPIO_Speed_50MHz: 最高输出速率50MHz

2.3.4 GPIO_Mode

用以设置选中管脚的工作状态。

GPIO_Mode_AIN:        模拟输入

GPIO_Mode_IN_FLOATING:    浮空输入  

GPIO_Mode_IPD:         下拉输入

GPIO_Mode_IPU:           上 拉输入

GPIO_Mode_Out_OD:           开漏输出

GPIO_Mode_Out_PP:            推挽输出 

GPIO_Mode_AF_OD:            复用开漏输出  

GPIO_Mode_AF_PP:            复用推挽输出

2.4 函数GPI

O_StructInit

功能描述:把GPIO_InitStruct中的每一个参数按缺省值填入 例:

GPIO_InitTypeDefGPIO_InitStructure;  

GPIO_StructInit(&GPIO_InitStructure); 

GPIO_InitStruct:

GPIO_Pin:GPIO_Pin_All  

GPIO_Speed:GPIO_Speed_2MHz 

GPIO_Mode:GPIO_Mode_IN_FLOATING

2.5 函数GPIO_ReadInputDataBit​

功能描述:读取指定端口管脚的输入

例:

u8ReadValue;

ReadValue= GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_7);

2.6 函数GPIO_ReadInputData

功能描述:读取指定的GPIO端口输入​

例:

u16ReadValue;

ReadValue= GPIO_ReadInputData(GPIOC);

2.7 函数GPIO_ReadOutputDataBit

功能描述:读取指定端口管脚的输出

例:

u8ReadValue;

ReadValue= GPIO_ReadOutputDataBit(GPIOB,GPIO_Pin_7);

2.8 函数GPIO_ReadOutputData

功能描述:读取指定的GPIO端口输出

例:

u16ReadValue;

ReadValue= GPIO_ReadOutputData(GPIOC);

2.9 函数GPIO_SetBits

功能描述:置位指定的数据端口位

例: 将端口GPIOA的第10、15脚置1(高电平)

GPIO_SetBits(GPIOA,GPIO_Pin_10 | GPIO_Pin_15);

2.10 函数GPIO_ResetBits

功能描述:清除指定的数据端口位

例:将端口GPIOA的第10、15脚置0(低电平)

GPIO_ResetBits(GPIOA,GPIO_Pin_10 | GPIO_Pin_15);

2.11 函数GPIO_WriteBit

功能描述:设置或者清除指定的数据端口位

例:

GPIO_WriteBit(GPIOA,GPIO_Pin_15, Bit_SET);

2.12 函数GPIO_Write

功能描述:向指定GPIO数据端口写入数据

例:

GPIO_Write(GPIOA,0x1101);

2.13 函数GPIO_PinLockConfig

功能描述:锁定GPIO管脚设置寄存器

例:

GPIO_PinLockConfig(GPIOA,GPIO_Pin_0|GPIO_Pin_1);

2.14 函数GPIO_EventOutputConfig

功能描述:选择GPIO管脚用作事件输出 例:

GPIO_EventOutputConfig(GPIO_PortSourceGPIOE,GPIO_PinSource5);

GPIO_PortSource

GPIO_PortSource用以选择用作事件输出的GPIO端口。

2.15 函数GPIO_EventOutputCmd

功能描述:使能或者失能事件输出 例:

GPIO_EventOutputConfig(GPIO_PortSourceGPIOC,GPIO_PinSource6);
GPIO_EventOutputCmd(ENABLE);

2.16 函数GPIO_PinRemapConfig​

功能描述:改变指定管脚的映射例:

GPIO_PinRemapConfig(GPIO_Remap_I2C1,ENABLE);

一.GPIO概述

共有8种模式

可以通过编程选择:

  1. 浮空输入

  2. 带上拉输入

  3. 带下拉输入

  4. 模拟输入

  5. 开漏输出——(此模式可实现hotpower说的真双向IO)

  6. 推挽输出

  7. 复用功能的推挽输出

  8. 复用功能的开漏输出

模式7和模式8需根据具体的复用功能决定。

2、专门的寄存器(GPIOx_BSRR和GPIOx_BRR)实现对GPIO口的原子操作,即回避了设置或清除I/O端口时的“读-修改-写”操作,使得设置或清除I/O端口的操作不会被中断处理打断而造成误动作。

3、每个GPIO口都可以作为外部中断的输入,便于系统灵活设计。

4、I/O口的输出模式下,有3种输出速度可选(2MHz、10MHz和50MHz),这有利于噪声控制。这个速度是指I/O口驱动电路的响应速度而不是输出信号的速度,输出信号的速度与程序有关(芯片内部在I/O口的输出部分安排了多个响应速度不同的输出驱动电路,用户可以根据自己的需要选择合适的驱动电路)。通过选择速度来选择不同的输出驱动模块,达到最佳的噪声控制和降低功耗的目的。高频的驱动电路,噪声也高,当不需要高的输出频率时,请选用低频驱动电路,这样非常有利于提高系统的EMI性能。当然如果要输出较高频率的信号,但却选用了较低频率的驱动模块,很可能会得到失真的输出信号。

4.1各种接口的措施

4.1.1对于串口,假如最大波特率只需115.2k,那么用2M的GPIO的引脚速度就够了,既省电也噪声小。

4.1.2对于I2C接口,假如使用400k波特率,若想把余量留大些,那么用2M的GPIO的引脚速度或许不够,这时可以选用10M的GPIO引脚速度。

4.1.3对于SPI接口,假如使用18M或9M波特率,用10M的GPIO的引脚速度显然不够了,需要选用50M的GPIO的引脚速度。

4.2 GPIO口设为输入时,输出驱动电路与端口是断开,所以输出速度配置无意义。

4.3 在复位期间和刚复位后,复用功能未开启,I/O端口被配置成浮空输入模式。

4.4 所有端口都有外部中断能力。为了使用外部中断线,端口必须配置成输入模式。

4.5 GPIO口的配置具有上锁功能,当配置好GPIO口后,可以通过程序锁住配置组合,直到下次芯片复位才能解锁。

5、所有I/O口兼容CMOS和TTL,多数I/O口兼容5V电平。

6、大电流驱动能力:GPIO口在高低电平分别为0.4V和VDD-0.4V时,可以提供或吸收8mA电流;如果把输入输出电平分别放宽到1.3V和VDD-1.3V时,可以提供或吸收20mA电流。

7、具有独立的唤醒I/O口。

8、很多I/O口的复用功能可以重新映射。

9、GPIO口的配置具有上锁功能,当配置好GPIO口后,可以通过程序锁住配置组合,直到下次芯片复位才能解锁。此功能非常有利于在程序跑飞的情况下保护系统中其他的设备,不会因为某些I/O口的配置被改变而损坏——如一个输入口变成输出口并输出电流。

二.推挽结构

一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个截止.要实现线与需要用OC(opencollector)门电路 .如果输出级的有两个三极管,始终处于一个导通、一个截止的状态,也就是两个三级管推挽相连,这样的电路结构称为推拉式电路或图腾柱(Totem- pole)输出电路(可惜,图无法贴上)。当输出低电平时,也就是下级负载门输入低电平时,输出端的电流将是下级门灌入T4;当输出高电平时,也就是下级负载门输入高电平时,输出端的电流将是下级门从本级电源经 T3、D1 拉出。这样一来,输出高低电平时,T3 一路和 T4 一路将交替工作,从而减低了功耗,提高了每个管的承受能力。又由于不论走哪一路,管子导通电阻都很小,使RC常数很小,转变速度很快。因此,推拉式输出级既提高电路的负载能力,又提高开关速度。供你参考。

推挽电路是两个参数相同的三极管或MOSFET,以推挽方式存在于电路中,各负责正负半周的波形放大任务,电路工作时,两只对称的功率开关管每次只有一个导通,所以导通损耗小效率高。

输出既可以向负载灌电流,也可以从负载抽取电流

三.开漏电路

在电路设计时我们常常遇到开漏(open
drain)和开集(open collector)的概念。所谓开漏电路概念中提到的“漏”就是指MOSFET的漏极。同理,开集电路中的“集”就是指三极管的集电极。开漏电路就是指以MOSFET的漏极为输出的电路。一般的用法是会在漏极外部的电路添加上拉电阻。完整的开漏电路应该由开漏器件和开漏上拉电阻组成。

组成开漏形式的电路有以下几个特点:

  1. 利用 外部电路的驱动能力,减少IC内部的驱动。当IC内部MOSFET导通时,驱动电流是从外部的VCC流经R pull-up ,MOSFET到GND。IC内部仅需很下的栅极驱动电流。

  2. 可以将多个开漏输出的Pin,连接到一条线上。形成 “与逻辑” 关系。如图1,当PIN_A、PIN_B、PIN_C任意一个变低后,开漏线上的逻辑就为0了。这也是I2C,SMBus等总线判断总线占用状态的原理。

  3. 可以利用改变上拉电源的电压,改变传输电平。如图2, IC的逻辑电平由电源Vcc1决定,而输出高电平则由Vcc2决定。这样我们就可以用低电平逻辑控制输出高电平逻辑了。

  4. 开漏Pin不连接外部的上拉电阻,则只能输出低电平(因此对于经典的51单片机的P0口而言,要想做输入输出功能必须加外部上拉电阻,否则无法输出高电平逻辑)。

  5. 标准的开漏脚一般只有输出的能力。添加其它的判断电路,才能具备双向输入、输出的能力。

应用中需注意:

  1. 开漏和开集的原理类似,在许多应用中我们利用开集电路代替开漏电路。例如,某输入Pin要求由开漏电路驱动。则我们常见的驱动方式是利用一个三极管组成开集电路来驱动它,即方便又节省成本。如图3。

  2. 上拉电阻R pull-up的 阻值 决定了 逻辑电平转换的沿的速度 。阻值越大,速度越低功耗越小。反之亦然。

Push-Pull输出就是一般所说的推挽输出,在CMOS电路里面应该较CMOS输出更合适,应为在CMOS里面的push-pull输出能力不可能做得双极那么大。输出能力看IC内部输出极N管P管的面积。和开漏输出相比,push-pull的高低电平由IC的电源低定,不能简单的做逻辑操作等。 push-pull是现在CMOS电路里面用得最多的输出级设计方式。 at91rm9200
GPIO 模拟I2C接口时注意!!

猜你喜欢

转载自blog.csdn.net/qq_34623621/article/details/97813745