(Java并发基础)CAS原理

CAS 简介

CAS 被广泛应用在并发编程领域中,以实现那些不会被打断的数据交换操作,从而就实现了无锁的线程安全。CPU 是一条操作系统指令。CAS 有三个操作数:内存值 V、预期值 A、要修改的值 B。CAS 最核心的思路就是,仅当预期值 A 和当前的内存值 V 相同时,才将内存值修改为 B。

什么时候会用到 CAS

cas是一种乐观的线程安全实现方式。Doug Lea 大神在 JUC 包中大量使用了 CAS 技术,该技术既能保证安全性,又不需要使用互斥锁,能大大提升工具类的性能。

ConcurrentHashMap

ConcurrentHashMap 的例子,我们截取部分 putVal 方法的代码,如下所示:

final V putVal(K key, V value, boolean onlyIfAbsent) {
    if (key == null || value == null) throw new NullPointerException();
    int hash = spread(key.hashCode());
    int binCount = 0;
    for (Node<K,V>[] tab = table;;) {
        Node<K,V> f; int n, i, fh;
        if (tab == null || (n = tab.length) == 0)
            tab = initTable();
        else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
            if (casTabAt(tab, i, null,
                         new Node<K,V>(hash, key, value, null)))
                break;                   // no lock when adding to empty bin
        }
    //以下部分省略
    ...
}

在第 10 行,有一个醒目的方法,它就是 “casTabAt”,这个方法名就带有 “CAS”,内部就是调用了操作系统的CAS指令。代码如下。

static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
                                    Node<K,V> c, Node<K,V> v) {
    return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
}

可以看出,U 是 Unsafe 类型的,Unsafe 类包含 compareAndSwapInt、compareAndSwapLong、compareAndSwapObject 等和 CAS 密切相关的 native 层的方法,其底层正是利用 CPU 对 CAS 指令的支持实现的。

上面介绍的 casTabAt 方法,不仅被用在了 ConcurrentHashMap 的 putVal 方法中,还被用在了 merge、compute、computeIfAbsent、transfer 等重要的方法中,所以 ConcurrentHashMap 对于 CAS 的应用是比较广泛的。

ConcurrentLinkedQueue

非阻塞并发队列 ConcurrentLinkedQueue 的 offer 方法里也有 CAS 的身影,offer 方法的代码如下所示:

public boolean offer(E e) {
    checkNotNull(e);
    final Node<E> newNode = new Node<E>(e);

    for (Node<E> t = tail, p = t;;) {
        Node<E> q = p.next;
        if (q == null) {
            if (p.casNext(null, newNode)) {
                if (p != t) 
                    casTail(t, newNode); 
                return true;
            }
        }
        else if (p == q)
            p = (t != (t = tail)) ? t : head;
        else
            p = (p != t && t != (t = tail)) ? t : q;
    }
}

可以看出,在 offer 方法中,有一个 for 循环,这是一个死循环,在第 8 行有一个与 CAS 相关的方法,是 casNext 方法,用于更新节点。那么如果执行 p 的 casNext 方法失败的话,casNext 会返回 false,那么显然代码会继续在 for 循环中进行下一次的尝试。所以在这里也可以很明显的看出 ConcurrentLinkedQueue 的 offer 方法使用到了 CAS。

以上就是 CAS 在并发容器中应用的两个例子,我们再来看一看 CAS 在数据库中有哪些应用。

数据库

在我们的数据库中,也存在对乐观锁和 CAS 思想的应用。在更新数据时,我们可以利用 version 字段在数据库中实现乐观锁和 CAS 操作,而在获取和修改数据时都不需要加悲观锁。

具体思路如下:当我们获取完数据,并计算完毕,准备更新数据时,会检查现在的版本号与之前获取数据时的版本号是否一致,如果一致就说明在计算期间数据没有被更新过,可以直接更新本次数据;如果版本号不一致,则说明计算期间已经有其他线程修改过这个数据了,那就可以选择重新获取数据,重新计算,然后再次尝试更新数据。

假设取出数据的时候 version 版本为 1,相应的 SQL 语句示例如下所示:

UPDATE student        SET            name = ‘小王’,            version = 2        WHERE  id = 10               AND version = 1;

这样一来就可以用 CAS 的思想去实现本次的更新操作,它会先去比较 version 是不是最开始获取到的 1,如果和初始值相同才去进行 name 字段的修改,同时也要把 version 的值加一。

原子类

public final int getAndAdd(int delta) {    
    return unsafe.getAndAddInt(this, valueOffset, delta);
}

在这里,我们看到上述方法中有对 var5 的赋值,调用了 unsafe 的 getIntVolatile(var1, var2) 方法,这是一个 native 方法,作用是获取变量 var1 中偏移量 var2 处的值。这里传入 var1 的是 AtomicInteger 对象的引用,而 var2 就是 AtomicInteger 里面所存储的数值(也就是 value)的偏移量 valueOffset,所以此时得到的 var5 实际上代表当前时刻下的原子类中存储的数值。

接下来重点来了,我们看到有一个 compareAndSwapInt 方法,这里会传入多个参数,分别是 var1、var2、 var5、var5 + var4,其实它们代表 object、offset、expectedValue 和 newValue。

  1. 第一个参数 object 就是将要修改的对象,传入的是 this,也就是 atomicInteger 这个对象本身;
  2. 第二个参数是 offset,也就是偏移量,借助它就可以获取到 value 的数值;
  3. 第三个参数 expectedValue,代表“期望值”,传入的是刚才获取到的 var5;
  4. 而最后一个参数 newValue 是希望修改为的新值 ,等于之前取到的数值 var5 再加上 var4,而 var4 就是我们之前所传入的 delta,delta 就是我们希望原子类所改变的数值,比如可以传入 +1,也可以传入 -1。
    所以 compareAndSwapInt 方法的作用就是,判断如果现在原子类里 value 的值和之前获取到的 var5 相等的话,那么就把计算出来的 var5 + var4 给更新上去,所以说这行代码就实现了 CAS 的过程。

一旦 CAS 操作成功,就会退出这个 while 循环,但是也有可能操作失败。如果操作失败就意味着在获取到 var5 之后,并且在 CAS 操作之前,value 的数值已经发生变化了,证明有其他线程修改过这个变量。

这样一来,就会再次执行循环体里面的代码,重新获取 var5 的值,也就是获取最新的原子变量的数值,并且再次利用 CAS 去尝试更新,直到更新成功为止,所以这是一个死循环。

我们总结一下,Unsafe 的 getAndAddInt 方法是通过循环 + CAS 的方式来实现的,在此过程中,它会通过 compareAndSwapInt 方法来尝试更新 value 的值,如果更新失败就重新获取,然后再次尝试更新,直到更新成功。

CAS 有什么缺点

ABA 问题

首先,CAS 最大的缺点就是 ABA 问题。

决定 CAS 是否进行 swap 的判断标准是“当前的值和预期的值是否一致”,如果一致,就认为在此期间这个数值没有发生过变动,这在大多数情况下是没有问题的。

但是在有的业务场景下,我们想确切知道从上一次看到这个值以来到现在,这个值是否发生过变化。例如,这个值假设从 A 变成了 B,再由 B 变回了 A,此时,我们不仅认为它发生了变化,并且会认为它变化了两次。

在这种场景下,我们使用 CAS,就看不到这两次的变化,因为仅判断“当前的值和预期的值是否一致”就是不够的了。CAS 检查的并不是值有没有发生过变化,而是去比较这当前的值和预期值是不是相等,如果变量的值从旧值 A 变成了新值 B 再变回旧值 A,由于最开始的值 A 和现在的值 A 是相等的,所以 CAS 会认为变量的值在此期间没有发生过变化。所以,CAS 并不能检测出在此期间值是不是被修改过,它只能检查出现在的值和最初的值是不是一样。

我们举一个例子:假设第一个线程拿到的初始值是 100,然后进行计算,在计算的过程中,有第二个线程把初始值改为了 200,然后紧接着又有第三个线程把 200 改回了 100。等到第一个线程计算完毕去执行 CAS 的时候,它会比较当前的值是不是等于最开始拿到的初始值 100,此时会发现确实是等于 100,所以线程一就认为在此期间值没有被修改过,就理所当然的把这个 100 改成刚刚计算出来的新值,但实际上,在此过程中已经有其他线程把这个值修改过了,这样就会发生 ABA 问题。

如果发生了 ABA 问题,那么线程一就根本无法知晓在计算过程中是否有其他线程把这个值修改过,由于第一个线程发现当前值和预期值是相等的,所以就会认为在此期间没有线程修改过变量的值,所以它接下来的一些操作逻辑,是按照在此期间这个值没被修改过”的逻辑去处理的,比如它可能会打印日志:“本次修改十分顺利”,但是它本应触发其他的逻辑,比如当它发现了在此期间有其他线程修改过这个值,其实本应该打印的是“本次修改过程受到了干扰”。

那么如何解决这个问题呢?添加一个版本号就可以解决。

我们在变量值自身之外,再添加一个版本号,那么这个值的变化路径就从 A→B→A 变成了 1A→2B→3A,这样一来,就可以通过对比版本号来判断值是否变化过,这比我们直接去对比两个值是否一致要更靠谱,所以通过这样的思路就可以解决 ABA 的问题了。

在 atomic 包中提供了 AtomicStampedReference 这个类,它是专门用来解决 ABA 问题的,解决思路正是利用版本号,AtomicStampedReference 会维护一种类似 <Object,int> 的数据结构,其中的 int 就是用于计数的,也就是版本号,它可以对这个对象和 int 版本号同时进行原子更新,从而也就解决了 ABA 问题。因为我们去判断它是否被修改过,不再是以值是否发生变化为标准,而是以版本号是否变化为标准,即使值一样,它们的版本号也是不同的。

以上就是对 CAS 的第一个缺点—— ABA 问题的介绍。

自旋时间过长

CAS 的第二个缺点就是自旋时间过长。

由于单次 CAS 不一定能执行成功,所以 CAS 往往是配合着循环来实现的,有的时候甚至是死循环,不停地进行重试,直到线程竞争不激烈的时候,才能修改成功。

可是如果我们的应用场景本身就是高并发的场景,就有可能导致 CAS 一直都操作不成功,这样的话,循环时间就会越来越长。而且在此期间,CPU 资源也是一直在被消耗的,这会对性能产生很大的影响。所以这就要求我们,要根据实际情况来选择是否使用 CAS,在高并发的场景下,通常 CAS 的效率是不高的。

范围不能灵活控制

CAS 的第三个缺点就是不能灵活控制线程安全的范围。

通常我们去执行 CAS 的时候,是针对某一个,而不是多个共享变量的,这个变量可能是 Integer 类型,也有可能是 Long 类型、对象类型等等,但是我们不能针对多个共享变量同时进行 CAS 操作,因为这多个变量之间是独立的,简单的把原子操作组合到一起,并不具备原子性。因此如果我们想对多个对象同时进行 CAS 操作并想保证线程安全的话,是比较困难的。

有一个解决方案,那就是利用一个新的类,来整合刚才这一组共享变量,这个新的类中的多个成员变量就是刚才的那多个共享变量,然后再利用 atomic 包中的 AtomicReference 来把这个新对象整体进行 CAS 操作,这样就可以保证线程安全。

相比之下,如果我们使用其他的线程安全技术,那么调整线程安全的范围就可能变得非常容易,比如我们用 synchronized 关键字时,如果想把更多的代码加锁,那么只需要把更多的代码放到同步代码块里面就可以了。

猜你喜欢

转载自blog.csdn.net/gonghaiyu/article/details/107630645