Pytorch—入门篇

什么是PyTorch?

PyTorch是一个基于Python的科学计算库,它有以下特点:

  • 类似于NumPy,但是它可以使用GPU
  • 可以用它定义深度学习模型,可以灵活地进行深度学习模型的训练和使用

Tensors

Tensor类似与NumPy的ndarray,唯一的区别是Tensor可以在GPU上加速运算

构造一个未初始化的5x3矩阵:

import torch
x = torch.empty(5,3)
x

构建一个随机初始化的矩阵:

x = torch.rand(5,3)
x

构建一个全部为0,类型为long的矩阵

x = torch.zeros(5,3,dtype=torch.long)
x

x = torch.zeros(5,3).long()
x.dtype
torch.int64

从数据直接直接构建tensor:

x = torch.tensor([5.5,3])
x
tensor([5.5000, 3.0000])

也可以从一个已有的tensor构建一个tensor。这些方法会重用原来tensor的特征,例如,数据类型,除非提供新的数据。

x = x.new_ones(5,3, dtype=torch.double)
x

x = torch.randn_like(x, dtype=torch.float)
x

tensor的形状:

x.shape

(``torch.Size`` 返回的是一个tuple)

Operations

有很多种tensor运算。我们先介绍加法运算。

y = torch.rand(5,3)
y

可以写:x + y,也可以torch.add(x, y)

亦或y.add_(x)
 

加法:把输出作为一个变量

result = torch.empty(5,3)
torch.add(x, y, out=result)
# result = x + y
result

这种写法没啥必要

x[1:, 1:]

Resizing: 如果你希望resize/reshape一个tensor,可以使用torch.view

x = torch.randn(4,4)
y = x.view(16)
z = x.view(-1,8)
z

如果你有一个只有一个元素的tensor,使用.item()方法可以把里面的value变成Python数值。

x = torch.randn(1)
x

更多阅读

各种Tensor operations, 包括transposing, indexing, slicing, mathematical operations, linear algebra, random numbers在 <https://pytorch.org/docs/torch>

Numpy和Tensor之间的转化

在Torch Tensor和NumPy array之间相互转化非常容易。

Torch Tensor和NumPy array会共享内存,所以改变其中一项也会改变另一项。

把Torch Tensor转变成NumPy Array

改变numpy array里面的值

把NumPy ndarray转成Torch Tensor

所有CPU上的Tensor都支持转成numpy或者从numpy转成Tensor。

CUDA Tensors

使用.to方法,Tensor可以被移动到别的device上。

if torch.cuda.is_available():
    device = torch.device("cuda")
    y = torch.ones_like(x, device=device)
    x = x.to(device)
    z = x + y
    print(z)
    print(z.to("cpu", torch.double))

y.to("cpu").data.numpy()
y.cpu().data.numpy()
model = model.cuda()

 用numpy实现两层神经网络

一个全连接ReLU神经网络,一个隐藏层,没有bias。用来从x预测y,使用L2 Loss。

  • ℎ=?1?h=W1X
  • ?=???(0,ℎ)a=max(0,h)
  • ?ℎ??=?2?

这一实现完全使用numpy来计算前向神经网络,loss,和反向传播。

  • forward pass
  • loss
  • backward pass

numpy ndarray是一个普通的n维array。它不知道任何关于深度学习或者梯度(gradient)的知识,也不知道计算图(computation graph),只是一种用来计算数学运算的数据结构。

N, D_in, H, D_out = 64, 1000, 100, 10

# 随机创建一些训练数据
x = np.random.randn(N, D_in)
y = np.random.randn(N, D_out)

w1 = np.random.randn(D_in, H)
w2 = np.random.randn(H, D_out)

learning_rate = 1e-6
for it in range(500):
    # Forward pass
    h = x.dot(w1) # N * H
    h_relu = np.maximum(h, 0) # N * H
    y_pred = h_relu.dot(w2) # N * D_out
    
    # compute loss
    loss = np.square(y_pred - y).sum()
    print(it, loss)
    
    # Backward pass
    # compute the gradient
    grad_y_pred = 2.0 * (y_pred - y)
    grad_w2 = h_relu.T.dot(grad_y_pred)
    grad_h_relu = grad_y_pred.dot(w2.T)
    grad_h = grad_h_relu.copy()
    grad_h[h<0] = 0
    grad_w1 = x.T.dot(grad_h)
    
    # update weights of w1 and w2
    w1 -= learning_rate * grad_w1
    w2 -= learning_rate * grad_w2

PyTorch: Tensors

这次我们使用PyTorch tensors来创建前向神经网络,计算损失,以及反向传播。

一个PyTorch Tensor很像一个numpy的ndarray。但是它和numpy ndarray最大的区别是,PyTorch Tensor可以在CPU或者GPU上运算。如果想要在GPU上运算,就需要把Tensor换成cuda类型。

N, D_in, H, D_out = 64, 1000, 100, 10

# 随机创建一些训练数据
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)

w1 = torch.randn(D_in, H)
w2 = torch.randn(H, D_out)

learning_rate = 1e-6
for it in range(500):
    # Forward pass
    h = x.mm(w1) # N * H
    h_relu = h.clamp(min=0) # N * H
    y_pred = h_relu.mm(w2) # N * D_out
    
    # compute loss
    loss = (y_pred - y).pow(2).sum().item()
    print(it, loss)
    
    # Backward pass
    # compute the gradient
    grad_y_pred = 2.0 * (y_pred - y)
    grad_w2 = h_relu.t().mm(grad_y_pred)
    grad_h_relu = grad_y_pred.mm(w2.t())
    grad_h = grad_h_relu.clone()
    grad_h[h<0] = 0
    grad_w1 = x.t().mm(grad_h)
    
    # update weights of w1 and w2
    w1 -= learning_rate * grad_w1
    w2 -= learning_rate * grad_w2

PyTorch: Tensor和autograd

PyTorch的一个重要功能就是autograd,也就是说只要定义了forward pass(前向神经网络),计算了loss之后,PyTorch可以自动求导计算模型所有参数的梯度。

一个PyTorch的Tensor表示计算图中的一个节点。如果x是一个Tensor并且x.requires_grad=True那么x.grad是另一个储存着x当前梯度(相对于一个scalar,常常是loss)的向量。

N, D_in, H, D_out = 64, 1000, 100, 10

# 随机创建一些训练数据
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)

w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)

learning_rate = 1e-6
for it in range(500):
    # Forward pass
    y_pred = x.mm(w1).clamp(min=0).mm(w2)
    
    # compute loss
    loss = (y_pred - y).pow(2).sum() # computation graph
    print(it, loss.item())
    
    # Backward pass
    loss.backward()
    
    # update weights of w1 and w2
    with torch.no_grad():
        w1 -= learning_rate * w1.grad
        w2 -= learning_rate * w2.grad
        w1.grad.zero_()
        w2.grad.zero_()

PyTorch: nn

这次我们使用PyTorch中nn这个库来构建网络。 用PyTorch autograd来构建计算图和计算gradients, 然后PyTorch会帮我们自动计算gradient。

import torch.nn as nn

N, D_in, H, D_out = 64, 1000, 100, 10

# 随机创建一些训练数据
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)

model = torch.nn.Sequential(
    torch.nn.Linear(D_in, H, bias=False), # w_1 * x + b_1
    torch.nn.ReLU(),
    torch.nn.Linear(H, D_out, bias=False),
)

torch.nn.init.normal_(model[0].weight)
torch.nn.init.normal_(model[2].weight)

# model = model.cuda()

loss_fn = nn.MSELoss(reduction='sum')

learning_rate = 1e-6
for it in range(500):
    # Forward pass
    y_pred = model(x) # model.forward() 
    
    # compute loss
    loss = loss_fn(y_pred, y) # computation graph
    print(it, loss.item())
    
    # Backward pass
    loss.backward()
    
    # update weights of w1 and w2
    with torch.no_grad():
        for param in model.parameters(): # param (tensor, grad)
            param -= learning_rate * param.grad
            
    model.zero_grad()

PyTorch: optim

这一次我们不再手动更新模型的weights,而是使用optim这个包来帮助我们更新参数。 optim这个package提供了各种不同的模型优化方法,包括SGD+momentum, RMSProp, Adam等等。

import torch.nn as nn

N, D_in, H, D_out = 64, 1000, 100, 10

# 随机创建一些训练数据
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)

model = torch.nn.Sequential(
    torch.nn.Linear(D_in, H, bias=False), # w_1 * x + b_1
    torch.nn.ReLU(),
    torch.nn.Linear(H, D_out, bias=False),
)

torch.nn.init.normal_(model[0].weight)
torch.nn.init.normal_(model[2].weight)

# model = model.cuda()

loss_fn = nn.MSELoss(reduction='sum')
# learning_rate = 1e-4
# optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

learning_rate = 1e-6
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

for it in range(500):
    # Forward pass
    y_pred = model(x) # model.forward() 
    
    # compute loss
    loss = loss_fn(y_pred, y) # computation graph
    print(it, loss.item())

    optimizer.zero_grad()
    # Backward pass
    loss.backward()
    
    # update model parameters
    optimizer.step()

PyTorch: 自定义 nn Modules

我们可以定义一个模型,这个模型继承自nn.Module类。如果需要定义一个比Sequential模型更加复杂的模型,就需要定义nn.Module模型。

import torch.nn as nn

N, D_in, H, D_out = 64, 1000, 100, 10

# 随机创建一些训练数据
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)

class TwoLayerNet(torch.nn.Module):
    def __init__(self, D_in, H, D_out):
        super(TwoLayerNet, self).__init__()
        # define the model architecture
        self.linear1 = torch.nn.Linear(D_in, H, bias=False)
        self.linear2 = torch.nn.Linear(H, D_out, bias=False)
    
    def forward(self, x):
        y_pred = self.linear2(self.linear1(x).clamp(min=0))
        return y_pred

model = TwoLayerNet(D_in, H, D_out)
loss_fn = nn.MSELoss(reduction='sum')
learning_rate = 1e-4
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

for it in range(500):
    # Forward pass
    y_pred = model(x) # model.forward() 
    
    # compute loss
    loss = loss_fn(y_pred, y) # computation graph
    print(it, loss.item())

    optimizer.zero_grad()
    # Backward pass
    loss.backward()
    
    # update model parameters
    optimizer.step()

猜你喜欢

转载自blog.csdn.net/qq_41686130/article/details/102058811