今天讲讲 Union-Find 算法,也就是常说的并查集算法,主要是解决图论中「动态连通性」问题的。名词很高端,其实特别好理解,等会解释,另外这个算法的应用都非常有趣。
说起这个 Union-Find,应该算是我的「启蒙算法」了,因为《算法4》的开头就介绍了这款算法,可是把我秀翻了,感觉好精妙啊!后来刷了 LeetCode,并查集相关的算法题目都非常有意思,而且《算法4》给的解法竟然还可以进一步优化,只要加一个微小的修改就可以把时间复杂度降到 O(1)。
废话不多说,直接上干货,先解释一下什么叫动态连通性吧。
一、问题介绍
简单说,动态连通性其实可以抽象成给一幅图连线。比如下面这幅图,总共有 10 个节点,他们互不相连,分别用 0~9 标记:
现在我们的 Union-Find 算法主要需要实现这两个 API:
class UF { /* 将 p 和 q 连接 */ public void union(int p, int q); /* 判断 p 和 q 是否连通 */ public boolean connected(int p, int q); /* 返回图中有多少个连通分量 */ public int count(); }
这里所说的「连通」是一种等价关系,也就是说具有如下三个性质:
1、自反性:节点p
和p
是连通的。
2、对称性:如果节点p
和q
连通,那么q
和p
也连通。
3、传递性:如果节点p
和q
连通,q
和r
连通,那么p
和r
也连通。
比如说之前那幅图,0~9 任意两个不同的点都不连通,调用connected
都会返回 false,连通分量为 10 个。
如果现在调用union(0, 1)
,那么 0 和 1 被连通,连通分量降为 9 个。
再调用union(1, 2)
,这时 0,1,2 都被连通,调用connected(0, 2)
也会返回 true,连通分量变为 8 个。
判断这种「等价关系」非常实用,比如说编译器判断同一个变量的不同引用,比如社交网络中的朋友圈计算等等。
这样,你应该大概明白什么是动态连通性了,Union-Find 算法的关键就在于union
和connected
函数的效率。那么用什么模型来表示这幅图的连通状态呢?用什么数据结构来实现代码呢?
二、基本思路
注意我刚才把「模型」和具体的「数据结构」分开说,这么做是有原因的。因为我们使用森林(若干棵树)来表示图的动态连通性,用数组来具体实现这个森林。
怎么用森林来表示连通性呢?我们设定树的每个节点有一个指针指向其父节点,如果是根节点的话,这个指针指向自己。比如说刚才那幅 10 个节点的图,一开始的时候没有相互连通,就是这样:
class UF { // 记录连通分量 private int count; // 节点 x 的节点是 parent[x] private int[] parent; /* 构造函数,n 为图的节点总数 */ public UF(int n) { // 一开始互不连通 this.count = n; // 父节点指针初始指向自己 parent = new int[n]; for (int i = 0; i < n; i++) parent[i] = i; } /* 其他函数 */ }
如果某两个节点被连通,则让其中的(任意)一个节点的根节点接到另一个节点的根节点上:
public void union(int p, int q) { int rootP = find(p); int rootQ = find(q); if (rootP == rootQ) return; // 将两棵树合并为一棵 parent[rootP] = rootQ; // parent[rootQ] = rootP 也一样 count--; // 两个分量合二为一 } /* 返回某个节点 x 的根节点 */ private int find(int x) { // 根节点的 parent[x] == x while (parent[x] != x) x = parent[x]; return x; } /* 返回当前的连通分量个数 */ public int count() { return count; }
这样,如果节点p
和q
连通的话,它们一定拥有相同的根节点:
public boolean connected(int p, int q) { int rootP = find(p); int rootQ = find(q); return rootP == rootQ; }
至此,Union-Find 算法就基本完成了。是不是很神奇?竟然可以这样使用数组来模拟出一个森林,如此巧妙的解决这个比较复杂的问题!
那么这个算法的复杂度是多少呢?我们发现,主要 APIconnected
和union
中的复杂度都是find
函数造成的,所以说它们的复杂度和find
一样。
find
主要功能就是从某个节点向上遍历到树根,其时间复杂度就是树的高度。我们可能习惯性地认为树的高度就是logN
,但这并不一定。logN
的高度只存在于平衡二叉树,对于一般的树可能出现极端不平衡的情况,使得「树」几乎退化成「链表」,树的高度最坏情况下可能变成N
。
所以说上面这种解法,find
,union
,connected
的时间复杂度都是 O(N)。这个复杂度很不理想的,你想图论解决的都是诸如社交网络这样数据规模巨大的问题,对于union
和connected
的调用非常频繁,每次调用需要线性时间完全不可忍受。
问题的关键在于,如何想办法避免树的不平衡呢?只需要略施小计即可。
PS:我认真写了 100 多篇原创,手把手刷 200 道力扣题目,全部发布在 labuladong的算法小抄,持续更新。建议收藏,按照我的文章顺序刷题,掌握各种算法套路后投再入题海就如鱼得水了。
三、平衡性优化
我们要知道哪种情况下可能出现不平衡现象,关键在于union
过程:
public void union(int p, int q) { int rootP = find(p); int rootQ = find(q); if (rootP == rootQ) return; // 将两棵树合并为一棵 parent[rootP] = rootQ; // parent[rootQ] = rootP 也可以 count--;
我们一开始就是简单粗暴的把p
所在的树接到q
所在的树的根节点下面,那么这里就可能出现「头重脚轻」的不平衡状况,比如下面这种局面:
长此以往,树可能生长得很不平衡。我们其实是希望,小一些的树接到大一些的树下面,这样就能避免头重脚轻,更平衡一些。解决方法是额外使用一个size
数组,记录每棵树包含的节点数,我们不妨称为「重量」:
class UF { private int count; private int[] parent; // 新增一个数组记录树的“重量” private int[] size; public UF(int n) { this.count = n; parent = new int[n]; // 最初每棵树只有一个节点 // 重量应该初始化 1 size = new int[n]; for (int i = 0; i < n; i++) { parent[i] = i; size[i] = 1; } } /* 其他函数 */ }
比如说size[3] = 5
表示,以节点3
为根的那棵树,总共有5
个节点。这样我们可以修改一下union
方法:
public void union(int p, int q) { int rootP = find(p); int rootQ = find(q); if (rootP == rootQ) return; // 小树接到大树下面,较平衡 if (size[rootP] > size[rootQ]) { parent[rootQ] = rootP; size[rootP] += size[rootQ]; } else { parent[rootP] = rootQ; size[rootQ] += size[rootP]; } count--; }
这样,通过比较树的重量,就可以保证树的生长相对平衡,树的高度大致在logN
这个数量级,极大提升执行效率。
此时,find
,union
,connected
的时间复杂度都下降为 O(logN),即便数据规模上亿,所需时间也非常少。
PS:我认真写了 100 多篇原创,手把手刷 200 道力扣题目,全部发布在 labuladong的算法小抄,持续更新。建议收藏,按照我的文章顺序刷题,掌握各种算法套路后投再入题海就如鱼得水了。
四、路径压缩
这步优化特别简单,所以非常巧妙。我们能不能进一步压缩每棵树的高度,使树高始终保持为常数?
这样find
就能以 O(1) 的时间找到某一节点的根节点,相应的,connected
和union
复杂度都下降为 O(1)。
要做到这一点,非常简单,只需要在find
中加一行代码:
private int find(int x) { while (parent[x] != x) { // 进行路径压缩 parent[x] = parent[parent[x]]; x = parent[x]; } return x; }
这个操作有点匪夷所思,看个 GIF 就明白它的作用了(为清晰起见,这棵树比较极端):
可见,调用find
函数每次向树根遍历的同时,顺手将树高缩短了,最终所有树高都不会超过 3(union
的时候树高可能达到 3)。
PS:读者可能会问,这个 GIF 图的find过程完成之后,树高恰好等于 3 了,但是如果更高的树,压缩后高度依然会大于 3 呀?不能这么想。这个 GIF 的情景是我编出来方便大家理解路径压缩的,但是实际中,每次find都会进行路径压缩,所以树本来就不可能增长到这么高,你的这种担心应该是多余的。
五、最后总结
我们先来看一下完整代码:
class UF { // 连通分量个数 private int count; // 存储一棵树 private int[] parent; // 记录树的“重量” private int[] size; public UF(int n) { this.count = n; parent = new int[n]; size = new int[n]; for (int i = 0; i < n; i++) { parent[i] = i; size[i] = 1; } } public void union(int p, int q) { int rootP = find(p); int rootQ = find(q); if (rootP == rootQ) return; // 小树接到大树下面,较平衡 if (size[rootP] > size[rootQ]) { parent[rootQ] = rootP; size[rootP] += size[rootQ]; } else { parent[rootP] = rootQ; size[rootQ] += size[rootP]; } count--; } public boolean connected(int p, int q) { int rootP = find(p); int rootQ = find(q); return rootP == rootQ; } private int find(int x) { while (parent[x] != x) { // 进行路径压缩 parent[x] = parent[parent[x]]; x = parent[x]; } return x; } public int count() { return count; } }
Union-Find 算法的复杂度可以这样分析:构造函数初始化数据结构需要 O(N) 的时间和空间复杂度;连通两个节点union
、判断两个节点的连通性connected
、计算连通分量count
所需的时间复杂度均为 O(1)。
现在解决这道朋友圈问题就很简单了:
public int findCircleNum(int[][] M) { int n = M.length; UF uf = new UF(n); for (int i = 0; i < n; i++) { for (int j = 0; j < i; j++) { if (M[i][j] == 1) uf.union(i, j); } } return uf.count(); }
接下文:Union-Find 算法应用