ArrayList(JDK1.8)源码解析

简介

ArrayList 是 Java 集合框架中 List 接口的一个实现类。底层是数组,相当于动态数组。与 Java 中的数组相比,它的容量能动态增长。

ArrayList 可以说是我们使用最多的 List 集合,它有以下特点:

  • 它是基于数组实现的List类
  • 可以动态地调整容量
  • 有序的(元素输出顺序与输入顺序一致)
  • 元素可以为 null
  • 不同步,非线程安全,效率高
  • 查询快,增删慢
  • 占用空间更小,对比 LinkedList,不用占用额外空间维护链表结构

继承关系图

在这里插入图片描述
可以看到,ArrayList是AbstractList的子类,同时实现了List接口。除此之外,它还实现了三个标识型接口,这几个接口都没有任何方法,仅作为标识表示实现类具备某项功能。RandomAccess表示实现类支持快速随机访问,Cloneable表示实现类支持克隆,具体表现为重写了clone方法,java.io.Serializable则表示支持序列化,如果需要对此过程自定义,可以重写writeObject与readObject方法。

源码分析

成员变量

//数组初始容量为 10
    
    private static final int DEFAULT_CAPACITY = 10;

    /**
     * 空对象数组
     */
    private static final Object[] EMPTY_ELEMENTDATA = {
    
    };

    /**
     * 缺省空对象数组
     */
    private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {
    
    };

    /**
     * 底层数据结构,数组
     */
    transient Object[] elementData; // non-private to simplify nested class access

    /**
     * 数组大小
     *
     * @serial
     */
    private int size;

    // 最大数组容量
    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;

构造方法

//默认构造方法,初始为空数组。
//只有插入一条数据后才会扩展为10,而实际上默认是空的
 public ArrayList() {
    
    
    this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
}

//根据指定容量创建对象数组
public ArrayList(int initialCapacity) {
    
    
    if (initialCapacity > 0) {
    
    
        //创建initialCapacity大小的数组
        this.elementData = new Object[initialCapacity];
    } else if (initialCapacity == 0) {
    
    
        //创建空数组
        this.elementData = EMPTY_ELEMENTDATA;
    } else {
    
    
        throw new IllegalArgumentException("Illegal Capacity: "+
                                               initialCapacity);
    }
}

/**
 * 构造一个包含指定集合的元素的列表,按照它们由集合的迭代器返回的顺序。
 */
public ArrayList(Collection<? extends E> c) {
    
    
    //转换最主要的是toArray(),这在Collection中就定义了
    elementData = c.toArray();
    if ((size = elementData.length) != 0) {
    
    
        // c.toArray 有可能不返回一个 Object 数组
        if (elementData.getClass() != Object[].class)
            //使用 Arrays.copy 方法拷创建一个 Object 数组
            elementData = Arrays.copyOf(elementData, size, Object[].class);
    } else {
    
    
        // 替换为空数组
        this.elementData = EMPTY_ELEMENTDATA;
    }
}

以无参数构造方法创建 ArrayList 时,实际上初始化赋值的是一个空数组。当真正对数组进行添加元素操作时,才真正分配容量。即向数组中添加第一个元素时,数组容量扩为10。

内部类ArrayList有四个内部类

/*
* Itr是实现了Iterator接口,同时重写了里面的
* hasNext(), next(), remove() 等方法
*/
private class Itr implements Iterator<E>  

/*
* ListItr 继承 Itr,实现了ListIterator接口,同时重写了hasPrevious(), 
* nextIndex(), previousIndex(), previous(), set(E e), add(E e) 等方法
*/
private class ListItr extends Itr implements ListIterator<E>

/*
*
*/
private class SubList extends AbstractList<E> implements RandomAccess
/*
*
*/
static final class ArrayListSpliterator<E> implements Spliterator<E> 

核心方法

add()方法(有四个)

//添加一个特定的元素到list的末尾
public boolean add(E e) {
    
    
    //先确保elementData数组的长度足够,size是数组中数据的个数,因为要添加一个元素,所以size+1,先判断size+1的这个个数数组能否放得下,在这个方法中去判断数组长度是否够用
    ensureCapacityInternal(size + 1);  // Increments modCount!!
    //在数据中正确的位置上放上元素e,并且size++
    elementData[size++] = e;
    return true;
}



//在指定位置添加一个元素
public void add(int index, E element) {
    
    
    rangeCheckForAdd(index);

    //先确保elementData数组的长度足够
    ensureCapacityInternal(size + 1);  // Increments modCount!!
    //将数据整体向后移动一位,空出位置之后再插入,效率不太好
    System.arraycopy(elementData, index, elementData, index + 1,
                         size - index);
    elementData[index] = element;
    size++;
}


// 校验插入位置是否合理
private void rangeCheckForAdd(int index) {
    
    
    //插入的位置肯定不能大于size 和小于0
    if (index > size || index < 0)   
        //如果是,就报越界异常
        throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}


//添加一个集合
public boolean addAll(Collection<? extends E> c) {
    
    
    //把该集合转为对象数组
    Object[] a = c.toArray();
    int numNew = a.length;
    //增加容量
    ensureCapacityInternal(size + numNew);  // Increments modCount
    //挨个向后迁移
    System.arraycopy(a, 0, elementData, size, numNew);
    size += numNew;
    //新数组有元素,就返回 true
    return numNew != 0;
}

//在指定位置,添加一个集合
public boolean addAll(int index, Collection<? extends E> c) {
    
    
    rangeCheckForAdd(index);

    Object[] a = c.toArray();
    int numNew = a.length;
    ensureCapacityInternal(size + numNew);  // Increments modCount

    int numMoved = size - index;
    //原来的数组挨个向后迁移
    if (numMoved > 0)
        System.arraycopy(elementData, index, elementData, index + numNew,
                         numMoved);
    //把新的集合数组 添加到指定位置
    System.arraycopy(a, 0, elementData, index, numNew);
    size += numNew;
    return numNew != 0;
}

虽说 System.arraycopy 是底层方法,但每次添加都后移一位还是不太好。

对数组的容量进行调整

//确保内部容量够用
private void ensureCapacityInternal(int minCapacity) {
    
    
    ensureExplicitCapacity(calculateCapacity(elementData, minCapacity));
}

//计算容量。判断初始化的elementData是不是空的数组,如果是空的话,返回默认容量10与minCapacity=size+1的较大值者。
private static int calculateCapacity(Object[] elementData, int minCapacity) {
    
    
    if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
    
    
        return Math.max(DEFAULT_CAPACITY, minCapacity);
    }
    return minCapacity;
}

//确认实际的容量,这个方法就是真正的判断elementData是否够用
private void ensureExplicitCapacity(int minCapacity) {
    
    
    modCount++;

    //minCapacity如果大于了实际elementData的长度,那么就说明elementData数组的长度不够用,不够用那么就要增加elementData的length。这里有的小伙伴就会模糊minCapacity到底是什么呢,这里解释一下

/**
     * 当我们要 add 进第1个元素到 ArrayList 时,elementData.length 为0 (因为还是一个空的 list),因为执行了 `ensureCapacityInternal()` 方法 ,所以 minCapacity 此时为10。此时,`minCapacity - elementData.length > 0 `成立,所以会进入 `grow(minCapacity)` 方法。
     * 当add第2个元素时,minCapacity 为2,此时e lementData.length(容量)在添加第一个元素后扩容成 10 了。此时,`minCapacity - elementData.length > 0 ` 不成立,所以不会进入 (执行)`grow(minCapacity)` 方法。
     * 添加第3、4···到第10个元素时,依然不会执行grow方法,数组容量都为10。
     * 直到添加第11个元素,minCapacity(为11)比elementData.length(为10)要大。进入grow方法进行扩容。
     */
    // overflow-conscious code
    if (minCapacity - elementData.length > 0)
        //ArrayList能自动扩展大小的关键方法就在这里了
        grow(minCapacity);
}

//扩容核心方法
private void grow(int minCapacity) {
    
    
    //将扩充前的elementData大小给oldCapacity
    // overflow-conscious code
    int oldCapacity = elementData.length;
    //新容量newCapacity是1.5倍的旧容量oldCapacity
    int newCapacity = oldCapacity + (oldCapacity >> 1);
    //这句话就是适应于elementData就空数组的时候,length=0,那么oldCapacity=0,newCapacity=0,所以这个判断成立,在这里就是真正的初始化elementData的大小了,就是为10。
    if (newCapacity - minCapacity < 0)
        newCapacity = minCapacity;
    //如果newCapacity超过了最大的容量限制,就调用hugeCapacity,也就是将能给的最大值给newCapacity
    if (newCapacity - MAX_ARRAY_SIZE > 0)
        newCapacity = hugeCapacity(minCapacity);
    //新的容量大小已经确定好了,就copy数组,改变容量大小。
    // minCapacity is usually close to size, so this is a win:
    elementData = Arrays.copyOf(elementData, newCapacity);
}

//这个就是上面用到的方法,很简单,就是用来赋最大值。
private static int hugeCapacity(int minCapacity) {
    
    
    if (minCapacity < 0) // overflow
        throw new OutOfMemoryError();
    //如果minCapacity都大于MAX_ARRAY_SIZE,那么就Integer.MAX_VALUE返回,反之将MAX_ARRAY_SIZE返回。因为maxCapacity是三倍的minCapacity,可能扩充的太大了,就用minCapacity来判断了。
	//Integer.MAX_VALUE:2147483647   MAX_ARRAY_SIZE:2147483639  也就是说最大也就能给到第一个数值。还是超过了这个限制,就要溢出了。相当于arraylist给了两层防护。
    return (minCapacity > MAX_ARRAY_SIZE) ?
        Integer.MAX_VALUE :
    MAX_ARRAY_SIZE;
}

至此,我们彻底明白了ArrayList的扩容机制了。首先创建一个空数组elementData,第一次插入数据时直接扩充至10,然后如果elementData的长度不足,就扩充至1.5倍,如果扩充完还不够,就使用需要的长度作为elementData的长度。

remove()

//根据索引删除指定位置的元素
public E remove(int index) {
    
    
    //检查index的合理性
    rangeCheck(index);
	//这个作用很多,比如用来检测快速失败的一种标志。
    modCount++;
    //通过索引直接找到该元素
    E oldValue = elementData(index);

    //计算要移动的位数。
    int numMoved = size - index - 1;
    if (numMoved > 0)
        //移动元素,挨个往前移一位。
        System.arraycopy(elementData, index+1, elementData, index,
                         numMoved);
    //将--size上的位置赋值为null,让gc(垃圾回收机制)更快的回收它。
    elementData[--size] = null; // clear to let GC do its work
	//返回删除的元素。
    return oldValue;
}

//从此列表中删除指定元素的第一个匹配项,如果存在,则删除。通过元素来删除该元素,就依次遍历,如果有这个元素,就将该元素的索引传给fastRemobe(index),使用这个方法来删除该元素,fastRemove(index)方法的内部跟remove(index)的实现几乎一样,这里最主要是知道arrayList可以存储null值
public boolean remove(Object o) {
    
    
    if (o == null) {
    
    
        //挨个遍历找到目标
        for (int index = 0; index < size; index++)
            if (elementData[index] == null) {
    
    
                //快速删除
                fastRemove(index);
                return true;
            }
    } else {
    
    
        for (int index = 0; index < size; index++)
            if (o.equals(elementData[index])) {
    
    
                fastRemove(index);
                return true;
            }
    }
    return false;
}

//内部方法,“快速删除”,就是把重复的代码移到一个方法里
private void fastRemove(int index) {
    
    
    modCount++;
    int numMoved = size - index - 1;
    if (numMoved > 0)
        System.arraycopy(elementData, index+1, elementData, index,
                         numMoved);
    elementData[--size] = null; // clear to let GC do its work
}

//删除或者保留指定集合中的元素
//用于两个方法,一个removeAll():它只清除指定集合中的元素,retainAll()用来测试两个集合是否有交集。 
private boolean batchRemove(Collection<?> c, boolean complement) {
    
    
    //将原集合,记名为A
    final Object[] elementData = this.elementData;
    //r用来控制循环,w是记录有多少个交集
    int r = 0, w = 0;
    boolean modified = false;
    try {
    
    
        //遍历 ArrayList 集合
        for (; r < size; r++)
            //参数中的集合c一次检测集合A中的元素是否有
            if (c.contains(elementData[r]) == complement)
                //有的话,就给集合A
                elementData[w++] = elementData[r];
    } finally {
    
    
        //发生了异常,直接把 r 后面的复制到 w 后面
        if (r != size) {
    
    
            //将剩下的元素都赋值给集合A
            System.arraycopy(elementData, r,
                             elementData, w,
                             size - r);
            w += size - r;
        }
        if (w != size) {
    
    
            //这里有两个用途,在removeAll()时,w一直为0,就直接跟clear一样,全是为null。
            //retainAll():没有一个交集返回true,有交集但不全交也返回true,而两个集合相等的时候,返回false,所以不能根据返回值来确认两个集合是否有交集,而是通过原集合的大小是否发生改变来判断,如果原集合中还有元素,则代表有交集,而元集合没有元素了,说明两个集合没有交集。
            // 清除多余的元素,clear to let GC do its work
            for (int i = w; i < size; i++)
                elementData[i] = null;
            modCount += size - w;
            size = w;
            modified = true;
        }
    }
    return modified;
}


//保留公共的
public boolean retainAll(Collection<?> c) {
    
    
    Objects.requireNonNull(c);
    return batchRemove(c, true);
}

//将elementData中每个元素都赋值为null,等待垃圾回收将这个给回收掉
public void clear() {
    
    
    modCount++;
    //并没有直接使数组指向 null,而是逐个把元素置为空,下次使用时就不用重新 new 了
    for (int i = 0; i < size; i++)
        elementData[i] = null;

    size = 0;
}

总结:根据索引删除指定位置的元素,此时会把指定下标到数组末尾的元素挨个向前移动一个单位,并且会把数组最后一个元素设置为null,这样是为了方便之后将整个数组不被使用时,会被GC,可以作为小的技巧使用。

get()方法

public E get(int index) {
    
    
    // 检验索引是否合法
    rangeCheck(index);

    return elementData(index);
}

private void rangeCheck(int index) {
    
    
    if (index >= size)
        throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}

说明:get函数会检查索引值是否合法(只检查是否大于size,而没有检查是否小于0),值得注意的是,在get函数中存在element函数,element函数用于返回具体的元素,具体函数如下:

E elementData(int index) {
    
    
    return (E) elementData[index];
}

说明:返回的值都经过了向下转型(Object -> E),这些是对我们应用程序屏蔽的小细节。

常用方法

System.arraycopy()和 Arrays.copyOf()方法

阅读源码的话,我们就会发现 ArrayList 中大量调用了这两个方法。比如:我们上面讲的扩容操作以及add(int index, E element)、E remove(int index)、toArray() 等方法中都用到了该方法!

System.arraycopy()方法
System.arraycopy(…):将指定源数组中的数组从指定位置开始复制到目标数组的指定位置。

// src:源对象
// srcPos:源对象对象的起始位置
// dest:目标对象
// destPost:目标对象的起始位置
// length:从起始位置往后复制的长度。
// 这段的大概意思就是解释这个方法的用法,复制src到dest,复制的位置是从src的srcPost开始,到srcPost+length-1的位置结束,复制到destPost上,从destPost开始到destPost+length-1的位置上
public static void arraycopy(Object src, int srcPos, Object dest, int destPos,
             int length)

Arrays.copyOf()方法

Array.copyOf() 选择指定的数组,截断或填充空值(如果需要),使副本具有指定的长度。以达到扩容的目的

//Arrays的copyOf()方法传回的数组是新的数组对象,改变传回数组中的元素值,不会影响原来的数组。
//copyOf()的第二个自变量指定要建立的新数组长度,如果新数组的长度超过原数组的长度,则保留数组默认值
public static <T> T[] copyOf(T[] original, int newLength) {
    
    
    return (T[]) copyOf(original, newLength, original.getClass());
}

/**
 * @Description 复制指定的数组, 如有必要用 null 截取或填充,以使副本具有指定的长度
 * 对于所有在原数组和副本中都有效的索引,这两个数组相同索引处将包含相同的值
 * 对于在副本中有效而在原数组无效的所有索引,副本将填充 null,当且仅当指定长度大于原数组的长度时,这些索引存在
 * 返回的数组属于 newType 类
 *
 * @param original 要复制的数组
 * @param newLength 副本的长度
 * @param newType 副本的类
 * 
 * @return T 原数组的副本,截取或用 null 填充以获得指定的长度
 * @throws NegativeArraySizeException 如果 newLength 为负
 * @throws NullPointerException 如果 original 为 null
 * @throws ArrayStoreException 如果从 original 中复制的元素不属于存储在 newType 类数组中的运行时类型
 */

public static <T,U> T[] copyOf(U[] original, int newLength, Class<? extends T[]> newType) {
    
    
    @SuppressWarnings("unchecked")
    T[] copy = ((Object)newType == (Object)Object[].class)
        ? (T[]) new Object[newLength]
        : (T[]) Array.newInstance(newType.getComponentType(), newLength);
    System.arraycopy(original, 0, copy, 0,
                     Math.min(original.length, newLength));
    return copy;
}

两者联系与区别

  • 联系:
    看两者源代码可以发现copyOf()内部调用了System.arraycopy()方法
  • 区别:
    arraycopy()需要目标数组,将原数组拷贝到你自己定义的数组里,而且可以选择拷贝的起点和长度以及放入新数组中的位置
    copyOf()是系统自动在内部新建一个数组,并返回该数组。

猜你喜欢

转载自blog.csdn.net/jinian2016/article/details/108549291