762. 二进制表示中质数个计算置位
Difficulty: 简单
给定两个整数 L
和 R
,找到闭区间 [L, R]
范围内,计算置位位数为质数的整数个数。
(注意,计算置位代表二进制表示中1的个数。例如 21
的二进制表示 10101
有 3 个计算置位。还有,1 不是质数。)
示例 1:
输入: L = 6, R = 10
输出: 4
解释:
6 -> 110 (2 个计算置位,2 是质数)
7 -> 111 (3 个计算置位,3 是质数)
9 -> 1001 (2 个计算置位,2 是质数)
10-> 1010 (2 个计算置位,2 是质数)
示例 2:
输入: L = 10, R = 15
输出: 5
解释:
10 -> 1010 (2 个计算置位, 2 是质数)
11 -> 1011 (3 个计算置位, 3 是质数)
12 -> 1100 (2 个计算置位, 2 是质数)
13 -> 1101 (3 个计算置位, 3 是质数)
14 -> 1110 (3 个计算置位, 3 是质数)
15 -> 1111 (4 个计算置位, 4 不是质数)
注意:
L, R
是L <= R
且在[1, 10^6]
中的整数。R - L
的最大值为 10000。
Solution
Language: ****
class Solution {
public:
int countPrimeSetBits(int L, int R) {
unordered_set<int>_primes({
2,3,5,7,11,13,17,19});
int res =0;
for (int i=L; i<=R;++i) {
int s =0;
for(int k=i;k; k>>=1) s += k&1;
if(_primes.count(s)) {
res++;
}
}
return res;
}
};