【矩阵乘法】裴波拉契数列II

Description

形如 1 1 2 3 5 8 13 21 34 55 89 144…的数列,求裴波拉契数列的第n项。

Input

n (1〈 n 〈2^31)

Output

一个数为裴波拉契数列的第n项mod 10000;

Sample Input
123456789
Sample Output
4514

解题思路

矩阵乘法
两个矩阵相乘 A * B,A的行 * B的列 得出新的矩阵C (所以A的列数一定等于B的行数)
C[i][j] = A[i][k] * B[k][j]

那么C的行数等于A的行数,C的列数等于B的列数
在这里插入图片描述

考虑构造一个矩阵A
在这里插入图片描述
再构造一个矩阵B
在这里插入图片描述
那么两个矩阵相乘后得
在这里插入图片描述
f [ n ] = f [ n − 1 ] + f [ n − 2 ] f[n] = f[n - 1] + f[n - 2] f[n]=f[n1]+f[n2]

A = A = A= { 0 , 1 , 1 , 1 0, 1, 1, 1 0111}
B = B = B= { f [ n − 2 ] , f [ n − 1 ] f[n - 2], f[n - 1] f[n2],f[n1]}

A ∗ B = A * B = AB= { f [ n − 2 ] ∗ 0 + f [ n − 1 ] ∗ 1 , f [ n − 2 ] ∗ 1 + f [ n − 1 ] ∗ 1 f[n - 2] * 0 + f[n - 1] * 1, f[n - 2] * 1 + f[n - 1] * 1 f[n2]0+f[n1]1f[n2]1+f[n1]1} = = = { f [ n − 1 ] , f [ n ] f[n - 1], f[n] f[n1]f[n]}

那么答案就等于 B * A * A * A…, 做一个矩阵快速幂把 A n − 1 A^{n-1} An1算出来再乘上B


Code

#include <iostream>
#include <cstring>
#include <cstdio>

using namespace std;

const int Mod = 10000;
long long n;

struct DT{
    
    
	int n, m;
	int aed[5][5];
}A, B, Ac;

DT operator *(DT a, DT b){
    
    //矩阵乘法
	DT c;
	c.n = a.n, c.m = b.m;
	memset (c.aed, 0, sizeof (c.aed));
	for (int k = 1; k <= a.m; k++)
		for (int i = 1; i <= c.n; i++)
			for (int j = 1; j <= c.m; j++)
				c.aed[i][j] = (c.aed[i][j] + a.aed[i][k] * b.aed[k][j] % Mod) % Mod;
	return c;
}

void power (long long n){
    
    //快速幂
	if (n == 1)
	{
    
    
		Ac = A;
		return;
	}
	power (n / 2);
	Ac = Ac * Ac;
	if (n % 2) Ac = Ac * A; 
}

int main(){
    
    
	A.n = A.m = 2;
	A.aed[1][2] = A.aed[2][1] = A.aed[2][2] = 1;
	B.n = 1, B.m = 2;
	B.aed[1][1] = B.aed[1][2] = 1;
	scanf ("%lld", &n);
	power (n - 1);
	B = B * Ac;
	printf ("%d", B.aed[1][1]);
}

猜你喜欢

转载自blog.csdn.net/qq_39940018/article/details/111057911