思路:
用 01 01 01背包求 n n n个数组成不同数的方案数, d p [ i ] dp[i] dp[i]代表组成能否组成 i i i,然后用枚举子集求去掉 m m m个数的状态集合,来枚举最大方案。
参考代码:
/*
* @Author: vain
* @Date: 2020
* @LastEditTime: 2020-10-07 18:44:42
* @LastEditors: sueRimn
* @Description: 学不会 dp 的 fw
* @FilePath: \main\demo.cpp
*/
#include <bits/stdc++.h>
#include <cstdio>
#include <algorithm>
#include <iostream>
#include <vector>
#include <map>
#include <queue>
#include <set>
#include <ctime>
#include <cstring>
#include <cstdlib>
#include <math.h>
#include <bitset>
//#include <unordered_map>
using namespace std;
typedef long long ll;
#define ll long long
//typedef unsigned long long uint;
const int N = 5000 + 20;
const int maxn = 1e5 + 20;
const int mod = 998244353;
int cnt, head[maxn], pos[maxn];
//typedef pair<ll, ll> p;
//priority_queue<p, vector<p>, greater<p>> q;
//int sum[maxn];
double Max(double a, double b) {
return a > b ? a : b; }
int min(int a, int b) {
return a < b ? a : b; }
int gcd(int a, int b) {
return b ? gcd(b, a % b) : a; }
int lcm(int a, int b) {
return a * b / gcd(a, b); }
void swap(int &x, int &y) {
x ^= y, y ^= x, x ^= y; }
int lowbit(int x) {
return (x) & (-x); }
//map<int, int> vis;
//unordered_map<int,int>vis;
ll ksm(ll a, ll b)
{
ll res = 1;
for (; b;)
{
if (b & 1)
res = (res * a) % mod;
b >>= 1, a = a * a % mod;
}
return res;
}
int read(int &v)
{
int k = 1;
v = 0;
int c = getchar();
while (c < '0' || c > '9')
{
if (c == '-')
k = 0;
c = getchar();
}
while (c >= '0' && c <= '9')
v = (v << 3) + (v << 1) + (c - 48), c = getchar();
if (k == 0)
v = -v;
return c;
}
int n, dp[2005], m, a[25], st[maxn * 10], ns, Maxs;
ll ans;
void init()
{
for (int i = 0; i < (1 << n); i++)
{
int sum = 0;
for (int j = 0; j < n; j++)
{
if ((i >> j) & 1)
sum++;
}
if (sum == m)
st[ns++] = i;
}
}
void slove(int x)
{
memset(dp, 0, sizeof dp);
dp[0] = 1;
ll Ma = 0;
for (int i = 0; i < n; i++)
{
if ((x >> i) & 1)
continue;
for (int j = Maxs; j >= a[i]; j--)
{
if (dp[j - a[i]] && (!dp[j]))
dp[j] = 1, Ma++;
}
}
if (Ma > ans)
ans = Ma;
}
int main()
{
read(n), read(m);
init();
for (int i = 0; i < n; i++)
read(a[i]), Maxs += a[i];
for (int i = 0; i < ns; i++)
slove(st[i]);
printf("%lld\n", ans);
}