一维抛物型方程的差分解法
问题内容
用显格式,向隐格式Crank-Nicolson格式来求解,取h=0.1,r=为0.1进行计算,后并分析误差。( τ \tau τ为t步长,h为x步长,为m位置,k时刻的温度)
算法求解
显格式(explicit scheme)求解
参考课本可得显格式(explicit scheme)的迭代过程:
( u 1 k + 1 u 2 k + 1 ⋮ u m − 2 k + 1 u m − 1 k + 1 ) = ( 1 − 2 r r r 1 − 2 r r ⋱ ⋱ ⋱ r 1 − 2 r r r 1 − 2 r ) ( u 1 k + r u 0 k u 2 k ⋮ u m − 2 k u m − 1 k + r u m k ) \left(\begin{array}{c}u_{1}^{k+1} \\ u_{2}^{k+1} \\ \vdots \\ u_{m-2}^{k+1} \\ u_{m-1}^{k+1}\end{array}\right)=\left(\begin{array}{ccccc}1-2 r & r & & & \\ r & 1-2 r & r & & \\ & \ddots & \ddots & \ddots & \\ & & & r & 1-2 r & r \\ & & & & r & 1-2 r\end{array}\right)\left(\begin{array}{c}u_{1}^{k}+ru_{0}^k \\ u_{2}^{k} \\ \vdots \\ u_{m-2}^{k} \\ u_{m-1}^{k}+ru_{m}^k\end{array}\right) ⎝⎜⎜⎜⎜⎜⎛u1k+1u2k+1⋮um−2k+1um−1k+1⎠⎟⎟⎟⎟⎟⎞=⎝⎜⎜⎜⎜⎛1−2rrr1−2r⋱r⋱⋱r1−2rrr1−2r⎠⎟⎟⎟⎟⎞⎝⎜⎜⎜⎜⎜⎛u1k+ru0ku2k⋮um−2kum−1k+rumk⎠⎟⎟⎟⎟⎟⎞
实现程序:
%参考课本
%slove program by explicit scheme
%u(j,n+1)=u(j,n)+v*(u(j+1,n)-2*u(j,n)+u(j-1,n))
xl=0;
xr=1;
j=10;
dx=(xr-xl)/j;%步长
tf=0.1;
Nt=50;
dt=tf/Nt;
mu=dt/(dx)^2;
%make sure dt satisy stability condition
if mu>0.5
error('mu shuold<0.5!')
end
%initial condition
x=xl:dx:xr;%grind point
f=sin(pi*x)+sin(2*pi*x);
%store the solution at all grid points for all time steps
u=zeros(j+1,Nt);
u_ture=zeros(j+1,Nt);
%find the approximate solution at each time step
for n=1:Nt
t=n*dt;
%boundary condition at left side
gl=exp(-1*pi*pi*t).*sin(pi*xl)+exp(-4*pi*pi*t).*sin(2*pi*xl);
%boundary condition at right side
gr=exp(-1*pi*pi*t).*sin(pi*xr)+exp(-4*pi*pi*t).*sin(2*pi*xr);
if n==1
for i=2:j
u(i,n)=f(i)+mu*(f(j+1)-2*f(j)+f(j-1));
end
u(1,n)=gl;
u(j+1)=gr;
else
for i=2:j
u(i,n)=u(i,n-1)+mu*(u(i+1,n-1)-2*u(i,n-1)+u(i-1,n-1));
end
u(1,n)=gl;
u(j+1)=gr;
end
%calculate the analytic solution
for i=1:j+1
xi=xl+(i-1)*dx;
u_ture(i,n)=exp(-1*pi*pi*t).*sin(pi*xi)+exp(-4*pi*pi*t).*sin(2*pi*xi);
end
end
%plot the result
tt=dt:dt:Nt*dt;
figure(1)
colormap(gray);
surf(x,tt,u');
xlabel('x');
ylabel('t');
zlabel('u');
title('explicit scheme')
%polt the analytic result
figure(2)
colormap(jet);
surf(x,tt,u_ture');
xlabel('x');
ylabel('t');
zlabel('u');
title('analytic solution')
隐格式(implicit scheme)求解
参考课本可得隐格式(implicit scheme)的迭代过程:
( 1 + 2 r − r − r 1 + 2 r − r ⋱ ⋱ ⋱ − r 1 + 2 r − r − r 1 + 2 r ) ( u 1 k u 2 k ⋮ u m − 2 k u m − 1 k ) \left(\begin{array}{ccccc}1+2 r & -r & & & \\ -r & 1+2 r & -r & & \\ & \ddots & \ddots & \ddots & \\ & & -r & 1+2 r & -r \\ & & & -r & 1+2 r\end{array}\right)\left(\begin{array}{c}u_{1}^{k} \\ u_{2}^{k} \\ \vdots \\ u_{m-2}^{k} \\ u_{m-1}^{k}\end{array}\right) ⎝⎜⎜⎜⎜⎛1+2r−r−r1+2r⋱−r⋱−r⋱1+2r−r−r1+2r⎠⎟⎟⎟⎟⎞⎝⎜⎜⎜⎜⎜⎛u1ku2k⋮um−2kum−1k⎠⎟⎟⎟⎟⎟⎞
= ( u 1 k − 1 + r u 0 k u 2 k − 1 ⋮ u m − 2 k − 1 u m − 1 k − 1 + r u m k ) =\left(\begin{array}{c}u_{1}^{k-1}+r u_{0}^{k} \\ u_{2}^{k-1} \\ \vdots \\ u_{m-2}^{k-1} \\ u_{m-1}^{k-1}+r u_{m}^{k}\end{array}\right) =⎝⎜⎜⎜⎜⎜⎛u1k−1+ru0ku2k−1⋮um−2k−1um−1k−1+rumk⎠⎟⎟⎟⎟⎟⎞
参照上算法
Crank_Nicolsm格式求解
参考课本可得Crank_Nicolsm格式的迭代过程:
( 1 + r − r 2 − r 2 1 + r − r 2 ⋱ ⋱ ⋱ − r 2 1 + r − r 2 − r 2 1 + r ) ( u 1 k + 1 u 2 k + 1 ⋮ u m − 2 k + 1 u m − 1 k + 1 ) \left(\begin{array}{ccccc}1+r & -\frac{r}{2} & & & \\ -\frac{r}{2} & 1+r & -\frac{r}{2} & & \\ & \ddots & \ddots & \ddots & \\ & & -\frac{r}{2} & 1+r & -\frac{r}{2} \\ & & & -\frac{r}{2} & 1+r\end{array}\right)\left(\begin{array}{c}u_{1}^{k+1} \\ u_{2}^{k+1} \\ \vdots \\ u_{m-2}^{k+1} \\ u_{m-1}^{k+1}\end{array}\right) ⎝⎜⎜⎜⎜⎛1+r−2r−2r1+r⋱−2r⋱−2r⋱1+r−2r−2r1+r⎠⎟⎟⎟⎟⎞⎝⎜⎜⎜⎜⎜⎛u1k+1u2k+1⋮um−2k+1um−1k+1⎠⎟⎟⎟⎟⎟⎞
= ( 1 − r r 2 r 2 1 − r r 2 ⋱ ⋱ ⋱ r 2 1 − r r 2 r 2 1 − r ) ( u 1 k + r 2 ( u 0 k + u 0 k + 1 ) u 2 k ⋮ u m − 2 k u m − 1 k + r 2 ( u m k + u m k + 1 ) ) =\left(\begin{array}{ccccc}1-r & \frac{r}{2} & & & \\ \frac{r}{2} & 1-r & \frac{r}{2} & & \\ & \ddots & \ddots & \ddots & \\ & & & \frac{r}{2} & 1-r & \frac{r}{2} \\ & & & \frac{r}{2} & 1-r\end{array}\right)\left(\begin{array}{c}u_{1}^{k}+\frac{r}{2}\left(u_{0}^{k}+u_{0}^{k+1}\right) \\ u_{2}^{k} \\ \vdots \\ u_{m-2}^{k} \\ u_{m-1}^{k}+\frac{r}{2}\left(u_{m}^{k}+u_{m}^{k+1}\right)\end{array}\right) =⎝⎜⎜⎜⎜⎛1−r2r2r1−r⋱2r⋱⋱2r2r1−r1−r2r⎠⎟⎟⎟⎟⎞⎝⎜⎜⎜⎜⎜⎛u1k+2r(u0k+u0k+1)u2k⋮um−2kum−1k+2r(umk+umk+1)⎠⎟⎟⎟⎟⎟⎞
程序
参照上程序
实验结果
三格式的迭代求解结果
误差分析
本次实验以CN格式分析为例,按上述计算思想计算得误差数据汇总的得到表1:( E ∞ = max ∣ u ( x i , t k ) − u i k ∣ \boldsymbol{E}_{\infty}=\max \left|\boldsymbol{u}\left(\boldsymbol{x}_{i}, \boldsymbol{t}_{k}\right)-\boldsymbol{u}_{i}^{k}\right| E∞=max∣∣u(xi,tk)−uik∣∣
)
实验总结
本次使用三种不同的差分格式:Crank_Nicolsm格式、显格式(explicit scheme)和隐格式(implicit scheme)对一个详细的一维抛物型方程进行求解,通过对上述格式进行误差分析,可以得到CN格式的求解误差最小,同时改变步长计算误差,得到CN格式下的误差收敛速度为:
。但是实验在三种格式的收敛速度的进一步比较上,限于时间精力,没有进一步展开,有待进一步研究提高。