pandas多个Series运算和单个Series运算

代码示例:

import pandas as pd
import numpy as np

#多个Series计算,相同索引的元素进行计算,只有一个索引的元素结果均为NaN。注意计算后元素类型会发生变化
series1 = pd.Series([5,6,7,8],['A','B','D','E'])
print(series1)
'''
打印:
A    5
B    6
D    7
E    8
dtype: int64
'''
series2 = pd.Series([2,3,4,4],['A','C','E','F'])
print(series2)
'''
打印:
A    2
C    3
E    4
F    4
dtype: int64
'''
print(series1-series2)
'''
打印:
A    3.0
B    NaN
C    NaN
D    NaN
E    4.0
F    NaN
dtype: float64
'''

#单个Series运算
print((series1*2).tolist())    #打印:[10, 12, 14, 16]
print(series1[series1>6].tolist())    #打印:[7, 8]
print(np.square(series1).tolist())    #打印:[25, 36, 49, 64]

猜你喜欢

转载自blog.csdn.net/caoxinjian423/article/details/112350141