train_test_split 参数详解
简单用法如下:
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
iris = load_iris()
print(iris.data.shape)
print(iris.DESCR)
(150, 4)
.. _iris_dataset:
Iris plants dataset
--------------------
**Data Set Characteristics:**
:Number of Instances: 150 (50 in each of three classes)
:Number of Attributes: 4 numeric, predictive attributes and the class
:Attribute Information:
- sepal length in cm
- sepal width in cm
- petal length in cm
- petal width in cm
- class:
- Iris-Setosa
- Iris-Versicolour
- Iris-Virginica
:Summary Statistics:
============== ==== ==== ======= ===== ====================
Min Max Mean SD Class Correlation
============== ==== ==== ======= ===== ====================
sepal length: 4.3 7.9 5.84 0.83 0.7826
sepal width: 2.0 4.4 3.05 0.43 -0.4194
petal length: 1.0 6.9 3.76 1.76 0.9490 (high!)
petal width: 0.1 2.5 1.20 0.76 0.9565 (high!)
============== ==== ==== ======= ===== ====================
:Missing Attribute Values: None
:Class Distribution: 33.3% for each of 3 classes.
:Creator: R.A. Fisher
:Donor: Michael Marshall (MARSHALL%[email protected])
:Date: July, 1988
The famous Iris database, first used by Sir R.A. Fisher. The dataset is taken
from Fisher's paper. Note that it's the same as in R, but not as in the UCI
Machine Learning Repository, which has two wrong data points.
This is perhaps the best known database to be found in the
pattern recognition literature. Fisher's paper is a classic in the field and
is referenced frequently to this day. (See Duda & Hart, for example.) The
data set contains 3 classes of 50 instances each, where each class refers to a
type of iris plant. One class is linearly separable from the other 2; the
latter are NOT linearly separable from each other.
.. topic:: References
- Fisher, R.A. "The use of multiple measurements in taxonomic problems"
Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to
Mathematical Statistics" (John Wiley, NY, 1950).
- Duda, R.O., & Hart, P.E. (1973) Pattern Classification and Scene Analysis.
(Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218.
- Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System
Structure and Classification Rule for Recognition in Partially Exposed
Environments". IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. PAMI-2, No. 1, 67-71.
- Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule". IEEE Transactions
on Information Theory, May 1972, 431-433.
- See also: 1988 MLC Proceedings, 54-64. Cheeseman et al"s AUTOCLASS II
conceptual clustering system finds 3 classes in the data.
- Many, many more ...
X, y = load_iris(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=33, stratify=y)
print(X_train.shape)
print(X_test.shape)
(112, 4)
(38, 4)
-
train_target:所要划分的样本结果
-
test_size:样本占比,如果是整数的话就是样本的数量
-
random_state:是随机数的种子。
随机数种子:其实就是该组随机数的编号,在需要重复试验的时候,保证得到一组一样的随机数。比如你每次都填1,其他参数一样的情况下你得到的随机数组是一样的。但填0或不填,每次都会不一样。 -
stratify是为了保持split前类的分布。比如有100个数据,80个属于A类,20个属于B类。如果train_test_split(… test_size=0.25, stratify = y_all), 那么split之后数据如下:
training: 75个数据,其中60个属于A类,15个属于B类。
testing: 25个数据,其中20个属于A类,5个属于B类。用了stratify参数,training集和testing集的类的比例是 A:B= 4:1,等同于split前的比例(80:20)。通常在这种类分布不平衡的情况下会用到stratify。
将stratify=X就是按照X中的比例分配
将stratify=y就是按照y中的比例分配
整体总结起来各个参数的设置及其类型如下:
主要参数说明:
*arrays:可以是列表、numpy数组、scipy稀疏矩阵或pandas的数据框
test_size:可以为浮点、整数或None,默认为None
①若为浮点时,表示测试集占总样本的百分比
②若为整数时,表示测试样本样本数
③若为None时,test size自动设置成0.25
train_size:可以为浮点、整数或None,默认为None
①若为浮点时,表示训练集占总样本的百分比
②若为整数时,表示训练样本的样本数
③若为None时,train_size自动被设置成0.75
random_state:可以为整数、RandomState实例或None,默认为None
①若为None时,每次生成的数据都是随机,可能不一样
②若为整数时,每次生成的数据都相同
stratify:可以为类似数组或None
①若为None时,划分出来的测试集或训练集中,其类标签的比例也是随机的
②若不为None时,划分出来的测试集或训练集中,其类标签的比例同输入的数组中类标签的比例相同,可以用于处理不均衡的数据集