题意
给一个数对(n, m),求出在a∈[1,n],b∈[1,m]中满足 ⌊ \lfloor ⌊ a b \frac{a}{b} ba ⌋ \rfloor ⌋ = a mod b的数对有多少个
分析
观察样例发现当a=b+1时肯定满足,然后接着往下推
当b=2时
a / b = 3 / 2 … 再往后 ⌊ \lfloor ⌊ a b \frac{a}{b} ba ⌋ \rfloor ⌋ 已经大于2了,因此不可能满足
当b=3时
a / b = 4 / 3, 8 / 3
当b=4时
a / b = 5 / 4, 10 / 4, 15 / 4
…
很容易发现当b = m时,最多只有m-1个a与之对应
然后观察a,发现每个a之间是相差了b+1,计算个数就可以写成 ⌊ \lfloor ⌊ n b + 1 \frac{n}{b+1} b+1n ⌋ \rfloor ⌋
所以可以考虑去枚举b,但一个个去枚举肯定超时,所以想到整除分块
写成式子就是 ∑ i = 2 b m i n ( i − 1 , n / ( i + 1 ) ) \sum_{i=2}^b min(i-1, n /( i+1)) ∑i=2bmin(i−1,n/(i+1))其中b为min(n-1, m)
Code
#include <bits/stdc++.h>
using namespace std;
//#define ACM_LOCAL
#define fi first
#define se second
#define il inline
#define re register
const int N = 5e5 + 10;
const int M = 5e5 + 10;
const int INF = 0x3f3f3f3f;
const double eps = 1e-5;
const int MOD = 10007;
typedef long long ll;
typedef pair<int, int> PII;
typedef unsigned long long ull;
ll calc(ll n, ll m) {
ll ans = 0;
for (ll l = 2, r; l <= min(n-1, m); l = r + 1) {
r = min(min(n-1, m), n / (n / (l+1)) - 1);//注意这里的-1
ans = ans + min(r*(r-1)/2 - (l-1)*(l-2)/2, (r - l + 1) * (n / (l+1)));
}
return ans;
}
void solve() {
int T; cin >> T; while (T--) {
ll n, m; cin >> n >> m;
if (n <= 2 || m < 2) cout << 0 << endl;
else {
cout << calc(n, m) << endl;
}
}
}
signed main() {
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
#ifdef ACM_LOCAL
freopen("input", "r", stdin);
freopen("output", "w", stdout);
#endif
solve();
}