李航《统计学习方法》第2版 第3章 Python编程KNN(暴力法)实现mnist数据集分类

代码(有注释):

#coding=utf-8
#参考深度之眼:Dodo老师的代码
'''
数据集:Mnist
训练集数量:60000
测试集数量:10000(这里使用:200)
------------------------------
运行结果:(邻近k数量:25)
向量距离使用算法——欧式距离
    正确率:97%
    运行时长:308s
向量距离使用算法——曼哈顿距离
    正确率:14%
    运行时长:246s
'''

import numpy as np
import time
from tqdm import tqdm

def loadData(fileName):
    '''
    加载文件
    :param fileName:要加载的文件路径
    :return: 数据集和标签集
    '''
    print('start read file')
    #存放数据及标记
    dataArr = []; labelArr = []
    #读取文件
    fr = open(fileName)
    #遍历文件中的每一行
    for line in tqdm(fr.readlines()):
        #获取当前行,并按“,”切割成字段放入列表中
        #strip:去掉每行字符串首尾指定的字符(默认空格或换行符)
        #split:按照指定的字符将字符串切割成每个字段,返回列表形式
        curLine = line.strip().split(',')
        #将每行中除标记外的数据放入数据集中(curLine[0]为标记信息)
        #在放入的同时将原先字符串形式的数据转换为整型
        dataArr.append([int(num) for num in curLine[1:]])
        #将标记信息放入标记集中
        #放入的同时将标记转换为整型
        labelArr.append(int(curLine[0]))
    #返回数据集和标记
    return dataArr, labelArr

def calcDist(x1, x2):
    '''
    计算两个样本点向量之间的距离
    使用的是欧氏距离,即 样本点每个元素相减的平方  再求和  再开方
    欧式举例公式这里不方便写,可以百度或谷歌欧式距离(也称欧几里得距离)
    :param x1:向量1
    :param x2:向量2
    :return:向量之间的欧式距离
    '''
    return np.sqrt(np.sum(np.square(x1 - x2)))

    #马哈顿距离计算公式
    # return np.sum(x1 - x2)




def getClosest(trainDataMat, trainLabelMat, x, topK):
    '''
    预测样本x的标记。
    获取方式通过找到与样本x最近的topK个点,并查看它们的标签。
    查找里面占某类标签最多的那类标签
    (书中3.1 3.2节)
    :param trainDataMat:训练集数据集
    :param trainLabelMat:训练集标签集
    :param x:要预测的样本x
    :param topK:选择参考最邻近样本的数目(样本数目的选择关系到正确率,详看3.2.3 K值的选择)
    :return:预测的标记
    '''
    #建立一个存放向量x与每个训练集中样本距离的列表
    #列表的长度为训练集的长度,distList[i]表示x与训练集中第
    ## i个样本的距离
    distList = [0] * len(trainLabelMat)
    #遍历训练集中所有的样本点,计算与x的距离
    for i in range(len(trainDataMat)):
        #获取训练集中当前样本的向量
        x1 = trainDataMat[i]
        #计算向量x与训练集样本x的距离
        curDist = calcDist(x1, x)
        #将距离放入对应的列表位置中
        distList[i] = curDist

    #对距离列表进行排序
    #argsort:函数将数组的值从小到大排序后,并按照其相对应的索引值输出
    #例如:
    #   >>> x = np.array([3, 1, 2])
    #   >>> np.argsort(x)
    #   array([1, 2, 0])
    #返回的是列表中从小到大的元素索引值,对于我们这种需要查找最小距离的情况来说很合适
    #array返回的是整个索引值列表,我们通过[:topK]取列表中前topL个放入list中。
    #----------------优化点-------------------
    #由于我们只取topK小的元素索引值,所以其实不需要对整个列表进行排序,而argsort是对整个
    #列表进行排序的,存在时间上的浪费。字典有现成的方法可以只排序top大或top小,可以自行查阅
    #对代码进行稍稍修改即可
    #这里没有对其进行优化主要原因是KNN的时间耗费大头在计算向量与向量之间的距离上,由于向量高维
    #所以计算时间需要很长,所以如果要提升时间,在这里优化的意义不大。(当然不是说就可以不优化了,
    #主要是我太懒了)
    topKList = np.argsort(np.array(distList))[:topK]        #升序排序
    #建立一个长度时的列表,用于选择数量最多的标记
    #3.2.4提到了分类决策使用的是投票表决,topK个标记每人有一票,在数组中每个标记代表的位置中投入
    #自己对应的地方,随后进行唱票选择最高票的标记
    labelList = [0] * 10
    #对topK个索引进行遍历
    for index in topKList:
        #trainLabelMat[index]:在训练集标签中寻找topK元素索引对应的标记
        #int(trainLabelMat[index]):将标记转换为int(实际上已经是int了,但是不int的话,报错)
        #labelList[int(trainLabelMat[index])]:找到标记在labelList中对应的位置
        #最后加1,表示投了一票
        labelList[int(trainLabelMat[index])] += 1
    #max(labelList):找到选票箱中票数最多的票数值
    #labelList.index(max(labelList)):再根据最大值在列表中找到该值对应的索引,等同于预测的标记
    return labelList.index(max(labelList))


def model_test(trainDataArr, trainLabelArr, testDataArr, testLabelArr, topK):
    '''
    测试正确率
    :param trainDataArr:训练集数据集
    :param trainLabelArr: 训练集标记
    :param testDataArr: 测试集数据集
    :param testLabelArr: 测试集标记
    :param topK: 选择多少个邻近点参考
    :return: 正确率
    '''
    print('start test')
    #将所有列表转换为矩阵形式,方便运算
    trainDataMat = np.mat(trainDataArr); trainLabelMat = np.mat(trainLabelArr).T
    testDataMat = np.mat(testDataArr); testLabelMat = np.mat(testLabelArr).T

    #错误值计数
    errorCnt = 0
    #遍历测试集,对每个测试集样本进行测试
    #由于计算向量与向量之间的时间耗费太大,测试集有6000个样本,所以这里人为改成了
    #测试200个样本点,如果要全跑,将行注释取消,再下一行for注释即可,同时下面的print
    #和return也要相应的更换注释行
    # for i in range(len(testDataMat)):
    for i in range(200):
        # print('test %d:%d'%(i, len(trainDataArr)))
        print('test %d:%d' % (i, 200))
        #读取测试集当前测试样本的向量
        x = testDataMat[i]
        #获取预测的标记
        y = getClosest(trainDataMat, trainLabelMat, x, topK)
        #如果预测标记与实际标记不符,错误值计数加1
        if y != testLabelMat[i]: errorCnt += 1

    #返回正确率
    # return 1 - (errorCnt / len(testDataMat))
    return 1 - (errorCnt / 200)



if __name__ == "__main__":
    start = time.time()

    #获取训练集
    trainDataArr, trainLabelArr = loadData('../Mnist/mnist_train.csv')
    #获取测试集
    testDataArr, testLabelArr = loadData('../Mnist/mnist_test.csv')
    #计算测试集正确率
    accur = model_test(trainDataArr, trainLabelArr, testDataArr, testLabelArr, 25)
    #打印正确率
    print('accur is:%d'%(accur * 100), '%')

    end = time.time()
    #显示花费时间
    print('time span:', end - start)



Mnist数据集(csv格式)
链接:https://pan.baidu.com/s/1i3K61t-NqWuAchedGTAUPA
提取码:0i1e
复制这段内容后打开百度网盘手机App,操作更方便哦

新手一枚,如果有错,评论区帮忙指正谢谢大佬们,thanks~

猜你喜欢

转载自blog.csdn.net/weixin_43646592/article/details/109604183