双指针技巧可以分为两类,一类是「快慢指针」,一类是「左右指针」。前者解决主要解决链表中的问题,比如典型的判定链表中是否包含环;后者主要解决数组(或者字符串)中的问题,比如二分查找。
一、快慢指针的常见算法
快慢指针一般都初始化指向链表的头结点 head,前进时快指针 fast 在前,慢指针 slow 在后,巧妙解决一些链表中的问题。
1、判定链表中是否含有环
单链表的特点是每个节点只知道下一个节点,所以一个指针的话无法判断链表中是否含有环的。
如果链表中不含环,那么这个指针最终会遇到空指针 null 表示链表到头了,这还好说,可以判断该链表不含环。
public boolean hasCycle(ListNode head) {
while (head != null){
head = head.next;
}
return false;
}
但是如果链表中含有环,那么这个指针就会陷入死循环,因为环形数组中没有 null 指针作为尾部节点。
经典解法就是用两个指针,一个每次前进两步,一个每次前进一步。如果不含有环,跑得快的那个指针最终会遇到 null,说明链表不含环;如果含有环,快指针最终会超慢指针一圈,和慢指针相遇,说明链表含有环。
public boolean hasCycle(ListNode head){
ListNode fast, slow;
fast = slow = head;
while(fast != null && fast.next != null){
fast = fast.next.next;
slow = slow.next;
if(fast == slow){
return true;
}
}
return false;
}
2、已知链表中含有环,返回这个环的起始位置
public static ListNode detectCycle(ListNode head) {
ListNode fast = head;
ListNode slow = head;
while (fast != null && fast.next != null) {
slow = slow.next;
fast = fast.next.next;
if (slow == fast) {
ListNode index1 = fast;
ListNode index2 = head;
while (index1 != index2) {
index1 = index1.next;
index2 = index2.next;
}
return index2;
}
}
return null;
}
3、寻找链表的中点
类似上面的思路,我们还可以让快指针一次前进两步,慢指针一次前进一步,当快指针到达链表尽头时,慢指针就处于链表的中间位置。
public static ListNode findMid(ListNode head) {
ListNode slow, fast;
slow = fast = head;
while (fast != null && fast.next != null) {
fast = fast.next.next;
slow = slow.next;
}
return slow;// slow 就在中间位置
}
当链表的长度是奇数时,slow 恰巧停在中点位置;如果长度是偶数,slow 最终的位置是中间偏右。
寻找链表中点的一个重要作用是对链表进行归并排序。
回想数组的归并排序:求中点索引递归地把数组二分,最后合并两个有序数组。对于链表,合并两个有序链表是很简单的,难点就在于二分。
但是现在你学会了找到链表的中点,就能实现链表的二分了。
4、寻找链表的倒数第 k 个元素
我们的思路还是使用快慢指针,让快指针先走 k 步,然后快慢指针开始同速前进。这样当快指针走到链表末尾 null 时,慢指针所在的位置就是倒数第 k 个链表节点(为了简化,假设 k 不会超过链表长度):
public static ListNode findK(ListNode head, int k) {
ListNode slow, fast;
slow = fast = head;
while (k-- > 0){
fast = fast.next;
}
while (fast != null) {
slow = slow.next;
fast = fast.next;
}
return slow;
}
应用比如:力扣第 19 题「删除链表的倒数第n个元素」
class Solution {
public ListNode removeNthFromEnd(ListNode head, int n) {
ListNode slow = head;
ListNode fast = head;
for(int i = 0; i < n; i++){
fast = fast.next;
}
if(fast == null){
// 如果此时快指针走到头了,说明倒数第 n 个节点就是第一个结点
return head.next;
}
while(fast != null && fast.next != null){
// 让慢指针和快指针同步向前
slow = slow.next;
fast = fast.next;
}
slow.next = slow.next.next;// slow.next 就是倒数第 n 个节点,删除它
return head;
}
}
二、左右指针的常用算法
左右指针在数组中实际是指两个索引值,一般初始化为 left = 0, right = nums.length - 1 。
1、二分查找
前文 二分查找算法详解 有详细讲解,这里只写最简单的二分算法,旨在突出它的双指针特性:
int binarySearch(int[] nums, int target) {
int left = 0;
int right = nums.length - 1;
while(left <= right) {
int mid = left + (right - left) / 2;
if(nums[mid] == target)
return mid;
else if (nums[mid] < target)
left = mid + 1;
else if (nums[mid] > target)
right = mid - 1;
}
return -1;
}
2、两数之和
直接看一道 LeetCode 题目吧:
只要数组有序,就应该想到双指针技巧。这道题的解法有点类似二分查找,通过调节 left 和 right 可以调整 sum 的大小:
int twoSum(int[] nums, int target) {
int left = 0;
int right = nums.length - 1;
while(left < right) {
int sum = nums[left] + nums[right];
if(sum == target)
return new int[]{
left + 1, right + 1};
else if (sum < target)
left++;
else if (sum > target)
right--;
}
return -1;
}
3、反转数组
public void reverse(int[] nums) {
int left = 0;
int right = nums.length - 1;
while (left < right) {
// swap(nums[left], nums[right])
int temp = nums[left];
nums[left] = nums[right];
nums[right] = temp;
left++; right--;
}
}
4、滑动窗口算法
/* 滑动窗口算法框架 */
void slidingWindow(string s, string t) {
unordered_map<char, int> need, window;
for (char c : t) need[c]++;
int left = 0, right = 0;
int valid = 0;
while (right < s.size()) {
// c 是将移入窗口的字符
char c = s[right];
// 右移窗口
right++;
// 进行窗口内数据的一系列更新
...
/*** debug 输出的位置 ***/
printf("window: [%d, %d)\n", left, right);
/********************/
// 判断左侧窗口是否要收缩
while (window needs shrink) {
// d 是将移出窗口的字符
char d = s[left];
// 左移窗口
left++;
// 进行窗口内数据的一系列更新
...
}
}
}
其中两处…表示的更新窗口数据的地方,到时候直接往里面填就行了。
而且,这两个…处的操作分别是右移和左移窗口更新操作,等会你会发现它们操作是完全对称的。