- var:e := 100
- const
const (
a, b = iota+1, iota+2 // iota = 0, a = iota + 1, b = iota + 2, a = 1, b = 2
c, d // iota = 1, c = iota + 1, d = iota + 2, c = 2, d = 3
e, f // iota = 2, e = iota + 1, f = iota + 2, e = 3, f = 4
g, h = iota * 2, iota *3 // iota = 3, g = iota * 2, h = iota * 3, g = 6, h = 9
i, k // iota = 4, i = iota * 2, k = iota * 3 , i = 8, k = 12
)
- List item
//返回多个返回值, 有形参名称的
func foo3(a string, b int) (r1 int, r2 int) {
fmt.Println("---- foo3 ----")
fmt.Println("a = ", a)
fmt.Println("b = ", b)
//r1 r2 属于foo3的形参, 初始化默认的值是0
//r1 r2 作用域空间 是foo3 整个函数体的{}空间
fmt.Println("r1 = ", r1)
fmt.Println("r2 = ", r2)
//给有名称的返回值变量赋值
r1 = 1000
r2 = 2000
return
}
- init和import
5.pointer
6.defer
压栈的形式。放在最后。
7.静态数组和动态数组slice
//数组传参要通过动态数组(长度不一致)
func printArray(myArray [4]int) {
//值拷贝
for index, value := range myArray {
fmt.Println("index = ", index, ", value = ", value)
}
myArray[0] = 111
}
func main() {
//固定长度的数组
var myArray1 [10]int
myArray2 := [10]int{
1,2,3,4}
myArray3 := [4]int{
11,22,33,44}
//for i := 0; i < 10; i++ {
for i := 0; i < len(myArray1); i++ {
fmt.Println(myArray1[i])
}
for index, value := range myArray2 {
fmt.Println("index = ", index, ", value = ", value)
}
//查看数组的数据类型
fmt.Printf("myArray1 types = %T\n", myArray1)
fmt.Printf("myArray2 types = %T\n", myArray2)
fmt.Printf("myArray3 types = %T\n", myArray3)
printArray(myArray3)
fmt.Println(" ------ ")
for index, value := range myArray3 {
fmt.Println("index = ", index, ", value = ", value)
}
}
8.slice
func main() {
//声明slice1是一个切片,并且初始化,默认值是1,2,3。 长度len是3
//slice1 := []int{1, 2, 3}
//声明slice1是一个切片,但是并没有给slice分配空间
var slice1 []int
//slice1 = make([]int, 3) //开辟3个空间 ,默认值是0
//声明slice1是一个切片,同时给slice分配空间,3个空间,初始化值是0
//var slice1 []int = make([]int, 3)
//声明slice1是一个切片,同时给slice分配空间,3个空间,初始化值是0, 通过:=推导出slice是一个切片
//slice1 := make([]int, 3)
fmt.Printf("len = %d, slice = %v\n", len(slice1), slice1)
//判断一个silce是否为0
if slice1 == nil {
fmt.Println("slice1 是一个空切片")
} else {
fmt.Println("slice1 是有空间的")
}
追加元素:append
append满了话会自动开辟cap大小的空间
切片截取:
s := []int{
1, 2, 3} //len = 3, cap = 3, [1,2,3]
//[0, 2)
s1 := s[0:2] // [1, 2]
fmt.Println(s1)
s1[0] = 100
fmt.Println(s)
fmt.Println(s1)
//copy 可以将底层数组的slice一起进行拷贝
s2 := make([]int, 3) //s2 = [0,0,0]
//将s中的值 依次拷贝到s2中
copy(s2, s)
fmt.Println(s2)
9.map
//===> 第一种声明方式
//声明myMap1是一种map类型 key是string, value是string
var myMap1 map[string]string
if myMap1 == nil {
fmt.Println("myMap1 是一个空map")
}
//在使用map前, 需要先用make给map分配数据空间
myMap1 = make(map[string]string, 10)
myMap1["one"] = "java"
myMap1["two"] = "c++"
myMap1["three"] = "python"
fmt.Println(myMap1)
//===> 第二种声明方式
myMap2 := make(map[int]string)
myMap2[1] = "java"
myMap2[2] = "c++"
myMap2[3] = "python"
fmt.Println(myMap2)
//===> 第三种声明方式
myMap3 := map[string]string{
"one": "php",
"two": "c++",
"three": "python",
}
fmt.Println(myMap3)
func printMap(cityMap map[string]string) {
//cityMap 是一个引用传递
for key, value := range cityMap {
fmt.Println("key = ", key)
fmt.Println("value = ", value)
}
}
func ChangeValue(cityMap map[string]string) {
cityMap["England"] = "London"
}
func main() {
cityMap := make(map[string]string)
//添加
cityMap["China"] = "Beijing"
cityMap["Japan"] = "Tokyo"
cityMap["USA"] = "NewYork"
//遍历
printMap(cityMap)
//删除
delete(cityMap, "China")
//修改
cityMap["USA"] = "DC"
ChangeValue(cityMap)
fmt.Println("-------")
//遍历
printMap(cityMap)
}
10.oop
//声明一种行的数据类型 myint, 是int的一个别名
type myint int
//定义一个结构体
type Book struct {
title string
auth string
}
func changeBook(book Book) {
//传递一个book的副本
book.auth = "666"
}
func changeBook2(book *Book) {
//指针传递
book.auth = "777"
}
func main() {
/*
var a myint = 10
fmt.Println("a = ", a)
fmt.Printf("type of a = %T\n", a)
*/
var book1 Book
book1.title = "Golang"
book1.auth = "zhang3"
fmt.Printf("%v\n", book1)
changeBook(book1)
fmt.Printf("%v\n", book1)
changeBook2(&book1)
fmt.Printf("%v\n", book1)
}
//如果类名首字母大写,表示其他包也能够访问
type Hero struct {
//如果说类的属性首字母大写, 表示该属性是对外能够访问的,否则的话只能够类的内部访问
Name string
Ad int
level int
}
//结构体的方法
/*
func (this Hero) Show() {
fmt.Println("Name = ", this.Name)
fmt.Println("Ad = ", this.Ad)
fmt.Println("Level = ", this.Level)
}
func (this Hero) GetName() string {
return this.Name
}
func (this Hero) SetName(newName string) {
//this 是调用该方法的对象的一个副本(拷贝)
this.Name = newName
}
*/
func (this *Hero) Show() {
fmt.Println("Name = ", this.Name)
fmt.Println("Ad = ", this.Ad)
fmt.Println("Level = ", this.level)
}
func (this *Hero) GetName() string {
return this.Name
}
func (this *Hero) SetName(newName string) {
//this 是调用该方法的对象的一个副本(拷贝)
this.Name = newName
}
func main() {
//创建一个对象
hero := Hero{
Name: "zhang3", Ad: 100}
hero.Show()
hero.SetName("li4")
hero.Show()
}
继承:
type Human struct {
name string
sex string
}
func (this *Human) Eat() {
fmt.Println("Human.Eat()...")
}
func (this *Human) Walk() {
fmt.Println("Human.Walk()...")
}
//=================
type SuperMan struct {
Human //SuperMan类继承了Human类的方法
level int
}
//重定义父类的方法Eat()
func (this *SuperMan) Eat() {
fmt.Println("SuperMan.Eat()...")
}
//子类的新方法
func (this *SuperMan) Fly() {
fmt.Println("SuperMan.Fly()...")
}
func (this *SuperMan) Print() {
fmt.Println("name = ", this.name)
fmt.Println("sex = ", this.sex)
fmt.Println("level = ", this.level)
}
func main() {
h := Human{
"zhang3", "female"}
h.Eat()
h.Walk()
//定义一个子类对象
//s := SuperMan{Human{"li4", "female"}, 88}
var s SuperMan
s.name = "li4"
s.sex = "male"
s.level = 88
s.Walk() //父类的方法
s.Eat() //子类的方法
s.Fly() //子类的方法
s.Print()
}
多态:
//interface本质是一个指针
type AnimalIF interface {
Sleep()
GetColor() string //获取动物的颜色
GetType() string //获取动物的种类
}
//具体的类
type Cat struct {
color string //猫的颜色
}
func (this *Cat) Sleep() {
fmt.Println("Cat is Sleep")
}
func (this *Cat) GetColor() string {
return this.color
}
func (this *Cat) GetType() string {
return "Cat"
}
//具体的类
type Dog struct {
color string
}
func (this *Dog) Sleep() {
fmt.Println("Dog is Sleep")
}
func (this *Dog) GetColor() string {
return this.color
}
func (this *Dog) GetType() string {
return "Dog"
}
func showAnimal(animal AnimalIF) {
animal.Sleep() //多态
fmt.Println("color = ", animal.GetColor())
fmt.Println("kind = ", animal.GetType())
}
func main() {
var animal AnimalIF //接口的数据类型, 父类指针
animal = &Cat{
"Green"}
animal.Sleep() //调用的就是Cat的Sleep()方法 , 多态的现象
animal = &Dog{
"Yellow"}
animal.Sleep() // 调用Dog的Sleep方法,多态的现象
cat := Cat{
"Green"}
dog := Dog{
"Yellow"}
showAnimal(&cat)
showAnimal(&dog)
}
//interface{}是万能数据类型
func myFunc(arg interface{
}) {
fmt.Println("myFunc is called...")
fmt.Println(arg)
//interface{} 改如何区分 此时引用的底层数据类型到底是什么?
//给 interface{} 提供 “类型断言” 的机制
value, ok := arg.(string)
if !ok {
fmt.Println("arg is not string type")
} else {
fmt.Println("arg is string type, value = ", value)
fmt.Printf("value type is %T\n", value)
}
}
type Book struct {
auth string
}
func main() {
book := Book{
"Golang"}
myFunc(book)
myFunc(100)
myFunc("abc")
myFunc(3.14)
}
11.reflect
typeof valueof
12.tag
type resume struct {
Name string `info:"name" doc:"我的名字"`
Sex string `info:"sex"`
}
func findTag(str interface{
}) {
t := reflect.TypeOf(str).Elem()
for i := 0; i < t.NumField(); i++ {
taginfo := t.Field(i).Tag.Get("info")
tagdoc := t.Field(i).Tag.Get("doc")
fmt.Println("info: ", taginfo, " doc: ", tagdoc)
}
}
func main() {
var re resume
findTag(&re)
}
type Movie struct {
Title string `json:"title"`
Year int `json:"year"`
Price int `json:"rmb"`
Actors []string `json:"actors"`
}
func main() {
movie := Movie{
"喜剧之王", 2000, 10, []string{
"xingye", "zhangbozhi"}}
//编码的过程 结构体---> json
jsonStr, err := json.Marshal(movie)
if err != nil {
fmt.Println("json marshal error", err)
return
}
fmt.Printf("jsonStr = %s\n", jsonStr)
//解码的过程 jsonstr ---> 结构体
//jsonStr = {"title":"喜剧之王","year":2000,"rmb":10,"actors":["xingye","zhangbozhi"]}
myMovie := Movie{
}
err = json.Unmarshal(jsonStr, &myMovie)
if err != nil {
fmt.Println("json unmarshal error ", err)
return
}
fmt.Printf("%v\n", myMovie)
}
13.goroutine
协程
早期:
m1完成后睡眠/销毁
//子goroutine
func newTask() {
i := 0
for {
i++
fmt.Printf("new Goroutine : i = %d\n", i)
time.Sleep(1 * time.Second)
}
}
//主goroutine
func main() {
//创建一个go程 去执行newTask() 流程
go newTask()
fmt.Println("main goroutine exit")
/*
i := 0
for {
i++
fmt.Printf("main goroutine: i = %d\n", i)
time.Sleep(1 * time.Second)
}
*/
}
14.channel
goroutine间的通信机制
无缓冲:
func main() {
//定义一个channel
c := make(chan int)
go func() {
defer fmt.Println("goroutine结束")
fmt.Println("goroutine 正在运行...")
c <- 666 //将666 发送给c
}()
num := <-c //从c中接受数据,并赋值给num
fmt.Println("num = ", num)
fmt.Println("main goroutine 结束...")
}
有缓冲:
func main() {
c := make(chan int, 3) //带有缓冲的channel
fmt.Println("len(c) = ", len(c), ", cap(c)", cap(c))
go func() {
defer fmt.Println("子go程结束")
for i := 0; i < 4; i++ {
c <- i
fmt.Println("子go程正在运行, 发送的元素=", i, " len(c)=", len(c), ", cap(c)=", cap(c))
}
}()
time.Sleep(2 * time.Second)
for i := 0; i < 4; i++ {
num := <-c //从c中接收数据,并赋值给num
fmt.Println("num = ", num)
}
fmt.Println("main 结束")
}
关闭channel
func main() {
c := make(chan int)
go func() {
for i := 0; i < 5; i++ {
c <- i
//close可以关闭一个channel
close(c)
}
}()
for {
//ok如果为true表示channel没有关闭,如果为false表示channel已经关闭
if data, ok := <-c; ok {
fmt.Println(data)
} else {
break
}
}
fmt.Println("Main Finished..")
}
channel不像⽂件⼀样需要经常去关闭,只有当你确实没有任何发送数据了,或者你想显式的结
束range循环之类的,才去关闭channel;
关闭channel后,⽆法向channel 再发送数据(引发 panic 错误后导致接收⽴即返回零值);
关闭channel后,可以继续从channel接收数据;
对于nil channel,⽆论收发都会被阻塞。
range:
func main() {
c := make(chan int)
go func() {
for i := 0; i < 5; i++ {
c <- i
}
//close可以关闭一个channel
close(c)
}()
//可以使用range来迭代不断操作channel
for data := range c {
fmt.Println(data)
}
fmt.Println("Main Finished..")
}
·1噢、】p0-q['
]\
Ÿvm,
]=-0q1 `qA
=-0 A在≥÷?。,b v
select:
单流程下⼀个go只能监控⼀个channel的状态,select可以完成
监控多个channel的状态
func fibonacii(c, quit chan int) {
x, y := 1, 1
for {
select {
case c <- x:
//如果c可写,则该case就会进来
x = y
y = x + y
case <-quit:
fmt.Println("quit")
return
}
}
}
func main() {
c := make(chan int)
quit := make(chan int)
//sub go
go func() {
for i := 0; i < 10; i++ {
fmt.Println(<-c)
}
quit <- 0
}()
//main go
fibonacii(c, quit)
}