Content
Intro
n linear equations, n unknowns.
E.g:
2 x − y = 0 − x + 2 y = 3 \begin{aligned} 2x-y = 0 \\ -x+2y = 3 \end{aligned} 2x−y=0−x+2y=3
can be written as:
[ 2 − 1 − 1 2 ] [ x y ] = [ 0 3 ] \left[ \begin{matrix} 2 & -1 \\ -1 & 2 \end{matrix} \right] \left[ \begin{matrix} x\\ y \end{matrix} \right] = \left[ \begin{matrix} 0\\ 3 \end{matrix} \right] [2−1−12][xy]=[03]
A X = b AX = b AX=b
Row picture
solution: x = 1 , y = 2 x = 1, y = 2 x=1,y=2
Column Picture
x [ 2 − 1 ] + y [ − 1 2 ] = [ 0 3 ] x\left[ \begin{matrix} 2\\-1 \end{matrix} \right] + y\left[ \begin{matrix} -1\\2 \end{matrix} \right] = \left[ \begin{matrix} 0\\3 \end{matrix} \right] x[2−1]+y[−12]=[03]
to find a linear combination of the columns to produce the new one.
Three variables
2 x − y = 0 − x + 2 y − z = 3 − 3 y + 4 z = 4 \begin{aligned} 2x-y = 0 \\ -x+2y-z = 3 \\ -3y+4z = 4 \end{aligned} 2x−y=0−x+2y−z=3−3y+4z=4
A = [ 2 − 1 0 − 1 2 − 1 0 − 3 4 ] A = \left[ \begin{matrix} 2 & -1 & 0 \\ -1 & 2 & -1\\ 0 & -3 & 4 \end{matrix} \right] A=⎣⎡2−10−12−30−14⎦⎤
Row picture
Three planes will cross at one point
Column picture
x [ 2 − 1 0 ] + y [ − 1 2 3 ] + z [ 0 − 1 4 ] = [ 0 − 1 4 ] x\left[ \begin{matrix} 2\\-1\\0 \end{matrix} \right] + y\left[ \begin{matrix} -1\\2\\3 \end{matrix} \right] + z\left[ \begin{matrix} 0\\-1\\4 \end{matrix} \right] =\left[ \begin{matrix} 0\\-1\\4 \end{matrix} \right] x⎣⎡2−10⎦⎤+y⎣⎡−123⎦⎤+z⎣⎡0−14⎦⎤=⎣⎡0−14⎦⎤
Can I solve A X = b AX = b AX=b for every b b b?
=
Do the linear combs of the columns fill 3-D space?
If the 3 column vectors are in the same plane, their linear combinations cannot produce b b b which is not in this plane.
Singular = not invertible
Lecture 2 Elimination
A = [ 1 2 1 3 8 1 0 4 1 ] − > [ 1 2 1 0 2 − 2 0 4 1 ] − > [ 1 2 1 0 2 − 2 0 0 5 ] A= \left[ \begin{matrix} 1&2&1 \\ 3&8&1 \\ 0&4&1 \end{matrix} \right]->\left[ \begin{matrix} 1&2&1 \\ 0&2&-2 \\ 0&4&1 \end{matrix} \right]->\left[ \begin{matrix} 1&2&1 \\ 0&2&-2 \\ 0&0&5 \end{matrix}\right] A=⎣⎡130284111⎦⎤−>⎣⎡1002241−21⎦⎤−>⎣⎡1002201−25⎦⎤
Augmented Matrix: Take b b b to the right side of A.
Row operation
[ a b ] [ c d e f ] = a [ c d ] + b [ e f ] \left[ \begin{matrix} a&b \end{matrix} \right] \left[ \begin{matrix} c&d\\ e&f \end{matrix} \right]= a\left[ \begin{matrix} c&d \end{matrix} \right] +b\left[ \begin{matrix} e&f \end{matrix} \right] [ab][cedf]=a[cd]+b[ef]
The elimination process:
[ 1 0 0 0 1 0 0 − 2 1 ] [ 1 0 0 − 3 1 0 0 0 1 ] [ 1 2 1 3 8 1 0 4 1 ] \left[ \begin{matrix} 1&0&0 \\ 0&1&0 \\ 0&-2&1 \end{matrix} \right] \left[ \begin{matrix} 1&0&0 \\ -3&1&0 \\ 0&0&1 \end{matrix} \right] \left[ \begin{matrix} 1&2&1 \\ 3&8&1 \\ 0&4&1 \end{matrix} \right] ⎣⎡10001−2001⎦⎤⎣⎡1−30010001⎦⎤⎣⎡130284111⎦⎤
Left multiplication means row operation.
Right multiplication means column operation
Lecture 3 Matrix multiplication and Inverses
Inverses
if A − 1 A^{-1} A−1 exists, A − 1 A = I A^{-1}A = I A−1A=I
Invertible = nonsingular
If I can find a non-zero vector X X X with A X = 0 AX = 0 AX=0
a little proof:
A X = 0 A − 1 A X = A − 1 0 = 0 X = 0 c o n t r a d i c t s w i t h n o n − z e r o AX = 0 \\ A^{-1}AX=A^{-1}0 = 0\\ X = 0 \\ contradicts\ with\ non-zero AX=0A−1AX=A−10=0X=0contradicts with non−zero
Gauss-Jordan
Assume that a row operation is P P P
if P A = I PA = I PA=I, then P I = A − 1 PI = A^{-1} PI=A−1
P [ A I ] = [ I A − 1 ] P[A\ I] = [I\ A^{-1}] P[A I]=[I A−1]
Lecture 4
( A B ) − 1 = B − 1 A − 1 (AB)^{-1} = B^{-1}A^{-1} (AB)−1=B−1A−1
( A T ) − 1 = ( A − 1 ) T (A^T)^{-1} = (A^{-1})^T (AT)−1=(A−1)T
LU decomposition
[ 1 0 − 4 1 ] [ 2 1 8 7 ] = [ 2 1 0 3 ] \left[ \begin{matrix} 1 & 0 \\ -4 & 1 \end{matrix} \right] \left[ \begin{matrix} 2&1 \\ 8&7 \end{matrix} \right] = \left[ \begin{matrix} 2&1\\ 0&3 \end{matrix} \right] [1−401][2817]=[2013]
[ 2 1 8 7 ] = [ 1 0 4 1 ] [ 2 1 0 3 ] \left[ \begin{matrix} 2&1 \\ 8&7 \end{matrix} \right]= \left[ \begin{matrix} 1&0 \\ 4&1 \end{matrix} \right] \left[ \begin{matrix} 2&1\\ 0&3 \end{matrix} \right] [2817]=[1401][2013]
A = L U A = LU A=LU
Lecture 5: Permutations
P A = L U PA = LU PA=LU
P P P: Identity matrix with reordered rows
P − 1 = P T P^{-1} = P^T P−1=PT
R T R R^TR RTR is always symmetric:
( R T R ) T = R T R T T = R T R (R^TR)^T = R^TR^{TT} = R^TR (RTR)T=RTRTT=RTR
Vector Space
Additivity and number multiplication.
Every vector space needs the Origin.
R n R^n Rn = all vectors with n real components.
We can multiply, we can add, and we stay in this vector space.
A line passing 0 is a subspace of R 2 R^2 R2