Topic:
用神经网络模型来建立一条拟合曲线,帮助了解一群数据的关联关系。
核心知识点讲解:
part01: 创建数据集
import torch
import torch.nn.functional as F
from torch.autograd import Variable
import matplotlib.pyplot as plt
import numpy as np
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1) # x data(tensor),shape=(100,1)
y = x.pow(2) + 0.2*torch.rand(x.size()) # add nosiy y data(tensor),shape=(100,1)
# torch can only train on Variable, so convert them to Variabel
# the code below is deprecated in PyTorch ,Now ,autograd directly supports tensors
x, y = Variable(x), Variable(y)
# 可视化
plt.scatter(x.data.numpy(), y.data.numpy())
plt.show()
part02: 创建神经网络模型
class Net(torch.nn.Module):
def __init__(self, n_feature, n_hidden, n_output):
super(Net, self).__init__() # 第一句话,调用父类的构造函数
self.hidden = torch.nn.Linear(n_feature, n_hidden) # hidden layer
self.predict = torch.nn.Linear(n_hidden, n_output) # output layer
def forward(self, x):
x = F.relu(self.hidden(x)) # activation function for hidden layer
x = self.predict(x) # linear output
return x
net = Net(n_feature=1, n_hidden=10, n_output=1) # 输入特征为1,隐藏层10个神经元,输出单变量
print(net) # net architecture
>>>
Net(
(hidden): Linear(in_features=1, out_features=10, bias=True)
(predict): Linear(in_features=10, out_features=1, bias=True)
)
part03: 构建优化器
具体参考:PyTorch中如何构建一个优化器
optimizer = torch.optim.SGD(net.parameters(), lr=0.2)
loss_func = torch.nn.MSELoss() # this is for regression mean squared loss
part04: 迭代过程可视化
具体参考:Python中使用plt.ion()和plt.ioff()画动态图
plt.ion() # something about plotting
for t in range(200):
prediction = net(x) # input x and predict based on x
loss = loss_func(prediction, y) # must be (1. nn output, 2. target)
optimizer.zero_grad() # clear gradients for next train
loss.backward() # backpropagation, compute gradients
optimizer.step() # apply gradients
if t % 5 == 0:
# plot and show learning process
plt.cla()
plt.scatter(x.data.numpy(), y.data.numpy())
plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw =5)
plt.text(0.5, 0, 'Loss=%.4f' % loss.data.numpy(), fontdict={
'size':20,'color':'red'})
plt.pause(0.1)
plt.ioff()
plt.show()