Excel安装&线性回归

一、Excel安装

1、Excel下载

方案一
自行百度进行下载,这里为大家附上下载链接

Excel.

我在网上下了很多次,安装的时候就变成了WPS的兼容安装,试了很多次都是一样的,然后我就问老师要了相关安装包。
据说安装后与WPS兼容的解决方法为:

  1. 默认打开方式为WPS;
  2. 鼠标右键选择,用Excel打开。
    我也没有去试,然后就直接安装老师发来的安装包。
    方案二
    我将安装包放到百度网盘,供大家自行下载。

链接:https://pan.baidu.com/s/13zalik-bfq1KrxsUurpLdw
提取码:l5pb
https://pan.baidu.com/s/13zalik-bfq1KrxsUurpLdw .

2、Excel安装

下载好安装包后,找到文件所在位置并右击鼠标,以管路员身份运行;
在这里插入图片描述
开始安装
在这里插入图片描述
等待安装…
在这里插入图片描述
安装完成
在这里插入图片描述
会在桌面出现如图三个快捷方式。

二、线性回归实例

实例1会为大家附上详细的教程,如何利用Excel对数据进行线性回归分析,后面的实例则直接显示结果

1、认识线性回归

回归
回归是设法找出变量间在数量上的依存变化关系, 用函数表达式表达出来,这个表达式称之为回归方程。
两变量间的关系

  1. 确定性关系
    两变量间的函数关系
    圆的周长与半径的关系: C=2R
    速度、时间与路程的关系:L=ST
    X与Y的函数关系: Y=a+bX
  2. 非确定性关系
    两变量在宏观上存在关系,但并未精确到可以用函数关系来表达。
    青少年身高与年龄的关系;
    身高与体重的关系:标准体重(kg)=身高(cm)-105
    药物浓度与反应率的关系
    线性回归的概念
    当两个变量存在准确、严格的直线关系时,可以用Y=a+bX,表示两者的函数关系。
    其中X 为自变量(independent variable);Y是因变量( dependent variable )。
    但在实际生活当中,由于其它因素的干扰,许多双变量之间的关系并不是严格的函数关系,不能用函数方程来准确反映,为了区别于两变量间的函数方程,我们称这种关系为回归关系,用直线方程来表示这种关系称为回归直线或线性回归。
    在这里插入图片描述

2、Excel线性回归实例1(附详细教程)

由于第一次使用Excel,这里并没有对数据进行线性回归分析,仅仅是利用已有数据对Excel的练手。

双击打开Excel
在这里插入图片描述
进入界面后出现如下提示,不用管,直接叉掉
在这里插入图片描述
看到如下界面
在这里插入图片描述
选择空白工作簿,双击打开
在这里插入图片描述
实例一题目PPT截图
在这里插入图片描述
PPT散点图
在这里插入图片描述
PPT回归方程
在这里插入图片描述
b的意义
在这里插入图片描述
a的意义
在这里插入图片描述
估计值 y^ 的意义
在这里插入图片描述
以上都是PPT上内容,下面为实践操作内容
根据例题讲x,y对应数据填入Excel表格
在这里插入图片描述
选中x,y值的数据区,点击“插入”——“折线图”——“二维折线图”;
在这里插入图片描述
散点图
在这里插入图片描述
鼠标右键单击折现,选择“添加趋势线”
在这里插入图片描述
选择“线性”、“显示公式”复选框后。点击“关闭”;
在这里插入图片描述
在这里插入图片描述
就这样,线性回归方程式就完成了
在这里插入图片描述
此外,我们还可以通过鼠标右键设置折线的颜色、字体、粗细等
在这里插入图片描述
以上就是对Excel绘制图像的简单介绍,后续则是本篇文章的主题。

3、一元线性回归——年龄与心率

添加数据分析项(请看图示步骤)
“文件”——“选项”——“加载项”

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
点击工具栏“数据”——“数据分析”

在这里插入图片描述
在弹出的小窗里面找到回归
在这里插入图片描述
单击输入值后面的按钮,注意x,y对应
在这里插入图片描述
点击“X”,输入区域会有值填入
在这里插入图片描述
对x进行同理操作,选中线性拟合图
在这里插入图片描述

注: x,y的行列数须相同,并且输入值要大于等于2

数据分析展示
在这里插入图片描述
预测值与残差
在这里插入图片描述

数据全部录入后图像(散点图)
在这里插入图片描述

鼠标选中坐标轴,可以改变坐标轴的起始值。

将图像作适当调整后
在这里插入图片描述
鼠标右击,更改图像类型,换为折线图
在这里插入图片描述
在这里插入图片描述
折线图如下
在这里插入图片描述
通过与PPT对比,拟合直线方程两者雷同,其他数据方面差距也不是很大,可以忽略不计的误差。

三、总结与参考资料

1、总结

由于第一次接触Excel,对于其很多用处都是百度着慢慢学的。不过这个软件对于数据分析相关还是挺方便的,对于线性回归类而言,就不需要如以前一样靠公式去进行复杂的计算了。对于Excel的更多应用,在后面慢慢学,希望这篇文章对大家有所帮助。

2、参考资料

如何用Excel做线性回归方程.
如何使用Excel做一元线性回归分析.

猜你喜欢

转载自blog.csdn.net/QWERTYzxw/article/details/114356750