机器学习笔记 - 学习朴素贝叶斯概念及应用

概念理解

朴素贝叶斯方法是一组监督学习算法,基于贝叶斯定理,并在给定类变量值的情况下,每对特征之间的条件独立性的“朴素”假设。尽管它们的假设显然过分简化,但朴素的贝叶斯分类器在许多实际情况下(在著名的文档分类和垃圾邮件过滤中)都表现良好。他们需要少量的训练数据来估计必要的参数。另一方面也是由于过于朴素,所以对于输入数据的准备方式较为敏感。

贝叶斯发展出来很多分类

Gaussian Naive Bayes(高斯朴素贝叶斯算法

Multinomial Naive Bayes(多项式朴素贝叶斯

Complement Naive Bayes(补充朴素贝叶斯

Bernoulli Naive Bayes(伯努利·朴素贝叶斯

Categorical Naive Bayes(分类朴素贝叶斯

Out-of-core naive Bayes model fitting(超核贝叶斯模型拟合

举例说明

数据集下载:

链接:https://pan.baidu.com/s/1JmfjcLZz3fGb_RUmPG0Rnw 
提取码:098k 

下面用汽车分类来举例说明

扫描二维码关注公众号,回复: 12726457 查看本文章
import os
import numpy as np
import pandas as pd
import numpy as np, pandas as pd
import matplotlib.pyplot as plt
from sklearn import metrics , model_selection
## Import the Classifier.
from sklearn.naive_bayes import GaussianNB

data = pd.read_csv('data/car_quality/car.data',names=['buying','maint','doors','persons','lug_boot','safety','class'])
data.head()

数据 

     buying    maint       doors      persons  lug_boot    safety      class
0    vhigh      vhigh      2              2     small       low          unacc
1    vhigh      vhigh      2              2     small       med         unacc
2    vhigh      vhigh      2              2     small       high        unacc
3    vhigh      vhigh      2              2     med         low          unacc
4    vhigh      vhigh      2              2     med         med         unacc
data['class'],class_names = pd.factorize(data['class'])
print(class_names)

print(data['class'].unique())

 打印结果

Index([u'unacc', u'acc', u'vgood', u'good'], dtype='object')
[0 1 2 3]
data['buying'],_ = pd.factorize(data['buying'])

data['maint'],_ = pd.factorize(data['maint'])

data['doors'],_ = pd.factorize(data['doors'])

data['persons'],_ = pd.factorize(data['persons'])

data['lug_boot'],_ = pd.factorize(data['lug_boot'])

data['safety'],_ = pd.factorize(data['safety'])

data.head()
 
buying
maint
doors
persons
lug_boot
safety
class
0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0
2 0 0 0 0 0 2 0
3 0 0 0 0 1 0 0
4 0 0 0 0 1 1 0

选择预测变量,然后选择目标变量

X = data.iloc[:,:-1]

y = data.iloc[:,-1]

分割训练集和测试集 

# split data randomly into 70% training and 30% test

X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.3, random_state=123)

训练

model = GaussianNB()

## Fit the model on the training data.

model.fit(X_train, y_train)

预测

# use the model to make predictions with the test data

y_pred = model.predict(X_test)

# how did our model perform?

count_misclassified = (y_test != y_pred).sum()

print('Misclassified samples: {}'.format(count_misclassified))

accuracy = metrics.accuracy_score(y_test, y_pred)

print('Accuracy: {:.2f}'.format(accuracy))

预测结果 

Misclassified samples: 150
Accuracy: 0.71

其它代码参考,使用朴素贝叶斯进行敏感词分类

代码来源:图灵程序设计丛书 - 机器学习实战

from numpy import *

# 词表到向量的转换函数
def loadDataSet():
    postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
                 ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
                 ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
                 ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                 ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
                 ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
    classVec = [0,1,0,1,0,1]    #1 is abusive, 0 not
    return postingList,classVec

# 创建一个包含在所有文档中出现的不重复词的列表,
def createVocabList(dataSet):
    # 创建一个空集合
    vocabSet = set([])  #create empty set
    # 创建并集
    for document in dataSet:
        vocabSet = vocabSet | set(document) #union of the two sets
    return list(vocabSet)

# 该函数的输入参数为词汇表及某个文
档,输出的是文档向量,向量的每一元素为1或0,分别表示词汇表中的单词在输入文档中是否出
现。
def setOfWords2Vec(vocabList, inputSet):
    returnVec = [0]*len(vocabList)
    for word in inputSet:
        if word in vocabList:
            returnVec[vocabList.index(word)] = 1
        else: print "the word: %s is not in my Vocabulary!" % word
    return returnVec

#朴素贝叶斯分类器训练函数 
def trainNB0(trainMatrix,trainCategory):
    numTrainDocs = len(trainMatrix)
    numWords = len(trainMatrix[0])
    pAbusive = sum(trainCategory)/float(numTrainDocs)
    # 初始化概率
    p0Num = ones(numWords); p1Num = ones(numWords)      #change to ones() 
    p0Denom = 2.0; p1Denom = 2.0                        #change to 2.0
    for i in range(numTrainDocs):
        if trainCategory[i] == 1:
            p1Num += trainMatrix[i]
            p1Denom += sum(trainMatrix[i])
        else:
            p0Num += trainMatrix[i]
            p0Denom += sum(trainMatrix[i])
    p1Vect = log(p1Num/p1Denom)          #change to log()
    p0Vect = log(p0Num/p0Denom)          #change to log()
    return p0Vect,p1Vect,pAbusive

# 朴素贝叶斯分类函数 
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
    p1 = sum(vec2Classify * p1Vec) + log(pClass1)    #element-wise mult
    p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1)
    if p1 > p0:
        return 1
    else: 
        return 0
    
def bagOfWords2VecMN(vocabList, inputSet):
    returnVec = [0]*len(vocabList)
    for word in inputSet:
        if word in vocabList:
            returnVec[vocabList.index(word)] += 1
    return returnVec

def testingNB():
    listOPosts,listClasses = loadDataSet()
    myVocabList = createVocabList(listOPosts)
    trainMat=[]
    for postinDoc in listOPosts:
        trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
    p0V,p1V,pAb = trainNB0(array(trainMat),array(listClasses))
    testEntry = ['love', 'my', 'dalmation']
    thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
    print testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb)
    testEntry = ['stupid', 'garbage']
    thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
    print testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb)

def textParse(bigString):    #input is big string, #output is word list
    import re
    listOfTokens = re.split(r'\W*', bigString)
    return [tok.lower() for tok in listOfTokens if len(tok) > 2] 
    
def spamTest():
    docList=[]; classList = []; fullText =[]
    for i in range(1,26):
        wordList = textParse(open('email/spam/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)
        wordList = textParse(open('email/ham/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)
    vocabList = createVocabList(docList)#create vocabulary
    trainingSet = range(50); testSet=[]           #create test set
    for i in range(10):
        randIndex = int(random.uniform(0,len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del(trainingSet[randIndex])  
    trainMat=[]; trainClasses = []
    for docIndex in trainingSet:#train the classifier (get probs) trainNB0
        trainMat.append(bagOfWords2VecMN(vocabList, docList[docIndex]))
        trainClasses.append(classList[docIndex])
    p0V,p1V,pSpam = trainNB0(array(trainMat),array(trainClasses))
    errorCount = 0
    for docIndex in testSet:        #classify the remaining items
        wordVector = bagOfWords2VecMN(vocabList, docList[docIndex])
        if classifyNB(array(wordVector),p0V,p1V,pSpam) != classList[docIndex]:
            errorCount += 1
            print "classification error",docList[docIndex]
    print 'the error rate is: ',float(errorCount)/len(testSet)
    #return vocabList,fullText

def calcMostFreq(vocabList,fullText):
    import operator
    freqDict = {}
    for token in vocabList:
        freqDict[token]=fullText.count(token)
    sortedFreq = sorted(freqDict.iteritems(), key=operator.itemgetter(1), reverse=True) 
    return sortedFreq[:30]       

def localWords(feed1,feed0):
    import feedparser
    docList=[]; classList = []; fullText =[]
    minLen = min(len(feed1['entries']),len(feed0['entries']))
    for i in range(minLen):
        wordList = textParse(feed1['entries'][i]['summary'])
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1) #NY is class 1
        wordList = textParse(feed0['entries'][i]['summary'])
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)
    vocabList = createVocabList(docList)#create vocabulary
    top30Words = calcMostFreq(vocabList,fullText)   #remove top 30 words
    for pairW in top30Words:
        if pairW[0] in vocabList: vocabList.remove(pairW[0])
    trainingSet = range(2*minLen); testSet=[]           #create test set
    for i in range(20):
        randIndex = int(random.uniform(0,len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del(trainingSet[randIndex])  
    trainMat=[]; trainClasses = []
    for docIndex in trainingSet:#train the classifier (get probs) trainNB0
        trainMat.append(bagOfWords2VecMN(vocabList, docList[docIndex]))
        trainClasses.append(classList[docIndex])
    p0V,p1V,pSpam = trainNB0(array(trainMat),array(trainClasses))
    errorCount = 0
    for docIndex in testSet:        #classify the remaining items
        wordVector = bagOfWords2VecMN(vocabList, docList[docIndex])
        if classifyNB(array(wordVector),p0V,p1V,pSpam) != classList[docIndex]:
            errorCount += 1
    print 'the error rate is: ',float(errorCount)/len(testSet)
    return vocabList,p0V,p1V

def getTopWords(ny,sf):
    import operator
    vocabList,p0V,p1V=localWords(ny,sf)
    topNY=[]; topSF=[]
    for i in range(len(p0V)):
        if p0V[i] > -6.0 : topSF.append((vocabList[i],p0V[i]))
        if p1V[i] > -6.0 : topNY.append((vocabList[i],p1V[i]))
    sortedSF = sorted(topSF, key=lambda pair: pair[1], reverse=True)
    print "SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**"
    for item in sortedSF:
        print item[0]
    sortedNY = sorted(topNY, key=lambda pair: pair[1], reverse=True)
    print "NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**"
    for item in sortedNY:
        print item[0]

其它参考文章

https://www.24tutorials.com/machine-learning/naive-bayes-algorithm/

https://www.intechopen.com/books/artificial-neural-networks-application/modeling-spammer-behavior-artificial-neural-network-vs-nai-ve-bayesian-classifier

https://www.emerald.com/insight/content/doi/10.1108/JEFAS-02-2017-0039/full/html

https://scikit-learn.org/stable/modules/naive_bayes.html

https://en.wikipedia.org/wiki/Naive_Bayes_classifier

http://www.ruanyifeng.com/blog/2013/12/naive_bayes_classifier.html

https://www.jianshu.com/p/cb5d1a7f9033

https://blog.csdn.net/weixin_43557810/article/details/91350799

https://blog.csdn.net/weixin_43225966/article/details/109909534

猜你喜欢

转载自blog.csdn.net/bashendixie5/article/details/111020448