基于SOM网络和归一化切割(Ncut)的双层聚类和体可视化(光线投射算法)

原文

A two-level clustering approach for multidimensional transfer function specification in volume visualization
由于这篇论文没有源码。所以我本科的毕业设计是用代码对该文章做了实现

代码资源

https://download.csdn.net/download/weixin_38616018/12540559

软件界面

在这里插入图片描述

效果

在这里插入图片描述

研究

该论文的主要思路
在这里插入图片描述

预处理

在这里插入图片描述
通过区域生长算法除去外围无关噪声,减少计算量

提取特征

在这里插入图片描述

SOM网络聚类

在这里插入图片描述作用降维把8维降到2维平面

class SOM(object):
    #To check if the SOM has been trained
    _trained = False
    def __init__(self, m, n, dim, n_iterations=3, alpha=None, sigma=None):
        #Assign required variables first
        self._m = m
        self._n = n
        if alpha is None:
            alpha = 0.3
        else:
            alpha = float(alpha)
        if sigma is None:
            sigma = max(m, n) / 2.0
        else:
            sigma = float(sigma)
        self._n_iterations = abs(int(n_iterations))
        ##INITIALIZE GRAPH
        self._graph = tf.Graph()
        ##POPULATE GRAPH WITH NECESSARY COMPONENTS
        with self._graph.as_default():
            ##VARIABLES AND CONSTANT OPS FOR DATA STORAGE
            #Randomly initialized weightage vectors for all neurons,
            #stored together as a matrix Variable of size [m*n, dim]
            self._weightage_vects = tf.Variable(tf.random_normal(
                [m*n, dim]))
            #Matrix of size [m*n, 2] for SOM grid locations
            #of neurons
            self._location_vects = tf.constant(np.array(
                list(self._neuron_locations(m, n))))
            ##PLACEHOLDERS FOR TRAINING INPUTS
            #We need to assign them as attributes to self, since they
            #will be fed in during training
            #The training vector
            self._vect_input = tf.placeholder("float", [dim])
            #Iteration number
            self._iter_input = tf.placeholder("float")
            ##CONSTRUCT TRAINING OP PIECE BY PIECE
            #Only the final, 'root' training op needs to be assigned as
            #an attribute to self, since all the rest will be executed
            #automatically during training
            #To compute the Best Matching Unit given a vector
            #Basically calculates the Euclidean distance between every
            #neuron's weightage vector and the input, and returns the
            #index of the neuron which gives the least value
            bmu_index = tf.argmin(tf.sqrt(tf.reduce_sum(
                tf.pow(tf.subtract(self._weightage_vects, tf.stack(
                    [self._vect_input for i in range(m*n)])), 2), 1)),
                                  0)
            #This will extract the location of the BMU based on the BMU's
            #index
            slice_input = tf.pad(tf.reshape(bmu_index, [1]),
                                 np.array([[0, 1]]))
            bmu_loc = tf.reshape(tf.slice(self._location_vects, slice_input,
                                          tf.constant(np.array([1, 2],dtype=np.int64))),
                                 [2])
            #To compute the alpha and sigma values based on iteration
            #number
            learning_rate_op = tf.subtract(1.0, tf.div(self._iter_input,
                                                  self._n_iterations))
            _alpha_op = tf.multiply(alpha, learning_rate_op)
            _sigma_op = tf.multiply(sigma, learning_rate_op)
            #Construct the op that will generate a vector with learning
            #rates for all neurons, based on iteration number and location
            #wrt BMU.
            bmu_distance_squares = tf.reduce_sum(tf.pow(tf.subtract(
                self._location_vects, tf.stack(
                    [bmu_loc for i in range(m*n)])), 2), 1)
            neighbourhood_func = tf.exp(tf.negative(tf.div(tf.cast(
                bmu_distance_squares, "float32"), tf.pow(_sigma_op, 2))))
            learning_rate_op = tf.multiply(_alpha_op, neighbourhood_func)
            #Finally, the op that will use learning_rate_op to update
            #the weightage vectors of all neurons based on a particular
            #input
            learning_rate_multiplytiplier = tf.stack([tf.tile(tf.slice(
                learning_rate_op, np.array([i]), np.array([1])), [dim])
                                               for i in range(m*n)])
            weightage_delta = tf.multiply(
                learning_rate_multiplytiplier,
                tf.subtract(tf.stack([self._vect_input for i in range(m*n)]),
                       self._weightage_vects))                                         
            new_weightages_op = tf.add(self._weightage_vects,
                                       weightage_delta)
            self._training_op = tf.assign(self._weightage_vects,
                                          new_weightages_op)                                       
            ##INITIALIZE SESSION
            self._sess = tf.Session()
            ##INITIALIZE VARIABLES
            init_op = tf.initialize_all_variables()
            self._sess.run(init_op)
    def _neuron_locations(self, m, n):
        #Nested iterations over both dimensions
        #to generate all 2-D locations in the map
        for i in range(m):
            for j in range(n):
                yield np.array([i, j])
    def train(self, input_vects):
        #Training iterations
        count=0
        for iter_no in range(self._n_iterations):
            #Train with each vector one by one
            for input_vect in input_vects:
                count+=1
                if(count%2500==0):
                    print(count/2500)
                self._sess.run(self._training_op,
                               feed_dict={
    
    self._vect_input: input_vect,
                                          self._iter_input: iter_no})
        #Store a centroid grid for easy retrieval later on
        centroid_grid = [[] for i in range(self._m)]
        self._weightages = list(self._sess.run(self._weightage_vects))
        self._locations = list(self._sess.run(self._location_vects))
        for i, loc in enumerate(self._locations):
            centroid_grid[loc[0]].append(self._weightages[i])
        self._centroid_grid = centroid_grid
        self._trained = True
    def get_centroids(self):
        if not self._trained:
            raise ValueError("SOM not trained yet")
        return self._centroid_grid
    def map_vects(self, input_vects):
        if not self._trained:
            raise ValueError("SOM not trained yet")
        to_return = []
        for vect in input_vects:
            min_index = min([i for i in range(len(self._weightages))],
                            key=lambda x: np.linalg.norm(vect-
                                                         self._weightages[x]))
            to_return.append(self._locations[min_index])
        return to_return
        

归一化切割

在这里插入图片描述
作用对2维平面做聚类分出类来
跟简单的一行代码
#归一化切割 ,谱聚类,用的sklearn这个库提供的方法
clustering = SpectralClustering(n_clusters=要聚的类数量).fit(w)

光线投射算法可视化

在这里插入图片描述
根据类别和透明度通过raycast算法绘制出图像投射到屏幕上
cpp代码

#include<stdio.h>
#include<stdlib.h>
#include<windows.h>
#include<math.h>
#include<string.h>
#include<GL/glut.h>
#define EPSILON 0.000001
#define WIDTH 1000
#define HEIGTH 500
short int themax = 0, themin = 255;
float Image[WIDTH * HEIGTH * 4];
void GenerateVolume(int* Data, int* Dim);//生成体数据
void Classify(float* CData, int* Data, int* Dim);//数据分类
void RotationMatrix(float* R, float* eye, float* center, float* up);//求取图像空间到物体空间变换的旋转矩阵
void Composite(float* rgba, int x0, int y0, float* CData, int* Dim, float* R, float* T);//合成像素颜色值
bool Intersection(float* startpos, float* pos, float* dir, int* Dim);//求光线与包围盒交点坐标
void TrInterpolation(float* rgba, float* pos, float* CData, int* Dim);//三线性插值
bool CheckinBox(float* point, int* Dim);//判断点是否在包围盒内
void MatrixmulVec(float* c, float* a, float* b);//矩阵向量乘积
void CrossProd(float* c, float* a, float* b);//向量叉乘
void Normalize(float* norm, float* a);//向量归一化
void Mydisplay();//显示图像
int main(int argc, char** argv)
{
    
    
    int Dim[3] = {
    
     256,161,256 };//体数据大小
    int* Data = (int*)malloc(sizeof(int) * Dim[0] * Dim[1] * Dim[2]);
    float* CData = (float*)malloc(sizeof(float) * Dim[0] * Dim[1] * Dim[2] * 4);
    float* LinePD = CData;
    int i, j, k, c;
    short int isolevel = 128;
    FILE* fptr;
    argc = 2;
    argv[1] = "H:\\\BaiduNetdiskDownload\\\RayCasting\\a\\demo255.raw";
    for (i = 1; i < argc; i++) {
    
    
        if (strcmp(argv[i], "-i") == 0)
            isolevel = atof(argv[i + 1]);
    }
    // Open and read the raw data
    fprintf(stderr, "Reading data ...\n");
    if ((fptr = fopen(argv[argc - 1], "rb")) == NULL) {
    
    
        fprintf(stderr, "File open failed\n");
        exit(-1);
    }
    for (i = 0; i < 256*161*256; i++) {
    
    
        if ((c = fgetc(fptr)) == EOF) {
    
    
            fprintf(stderr, "Unexpected end of file\n");
            exit(-1);
        }
        LinePD[0] = 1.0 * c / 255;
        if ((c = fgetc(fptr)) == EOF) {
    
    
            fprintf(stderr, "Unexpected end of file\n");
            exit(-1);
        }
        LinePD[1] = 1.0 * c / 255;
        if ((c = fgetc(fptr)) == EOF) {
    
    
            fprintf(stderr, "Unexpected end of file\n");
            exit(-1);
        }
        LinePD[2] = 1.0 * c / 255;
        if ((c = fgetc(fptr)) == EOF) {
    
    
            fprintf(stderr, "Unexpected end of file\n");
            exit(-1);
        }
        LinePD[3] = 0.05 * c / 255;
        LinePD += 4;
        if (c > themax)
            themax = c;
        if (c < themin)
            themin = c;
    }
    fclose(fptr);
    fprintf(stderr, "Volumetric data range: %d -> %d\n", themin, themax);
    float R[9];//旋转矩阵
    float T[3] = {
    
     0,0,450 };//平移向量(要根据R调整,以保证获得体数据全貌)
    float eye[3] = {
    
     0.5,0.5,1 };//视点位置
    float center[3] = {
    
     0,0,0 };//物体参考点位置
    float up[3] = {
    
     0,1,0 };//相机朝上的方向
    RotationMatrix(R, eye, center, up);//获得旋转矩阵
    GenerateVolume(Data, Dim);//生成原始体数据
    Classify(CData,Data,Dim);//对体数据分类
    float* LinePS = Image;
    for (int j = 0; j < HEIGTH; j++)//逐个合成像素值
    {
    
    
        for (int i = 0; i < WIDTH; i++)
        {
    
    
            Composite(LinePS, i, j, CData, Dim, R, T);
            LinePS += 4;
        }
    }
    free(Data);
    free(CData);
    //使用OpenGL显示此二维图像
}
//数据分类
//********************************************************************//
//将原始体数据的标量值映射为颜色和不透明度
//CData:分类后体数据
//Data:原始体数据
//Dim:体数据大小
//********************************************************************//
void Classify(float* CData, int* Data, int* Dim)
{
    
    
    int* LinePS = Data;
    float* LinePD = CData;
    for (int k = 0; k < Dim[2]; k++)
    {
    
    
        for (int j = 0; j < Dim[1]; j++)
        {
    
    
            for (int i = 0; i < Dim[0]; i++)
            {
    
    
                if (LinePS[0] <= 100)
                {
    
    
                    //白色
                    LinePD[0] = 1.0;
                    LinePD[1] = 1.0;
                    LinePD[2] = 1.0;
                    LinePD[3] = 0.005;
                }
                else if (LinePS[0] <= 200)
                {
    
    
                    //红色
                    LinePD[0] = 1.0;
                    LinePD[1] = 0.0;
                    LinePD[2] = 0.0;
                    LinePD[3] = 0.015;
                }
                else
                {
    
    
                    //黄色
                    LinePD[0] = 1.0;
                    LinePD[1] = 1.0;
                    LinePD[2] = 0.0;
                    LinePD[3] = 0.02;
                }
                LinePS++;
                LinePD += 4;
            }
        }
    }
}
//求取从图像空间到物体空间变换的旋转矩阵
//********************************************************************//
//功能类似于OpenGL中的gluLookAt函数
//参考:http://blog.csdn.net/popy007/article/details/5120158
//R:旋转矩阵
//eye:视点位置
//center:物体参考点位置
//up:相机朝上的方向
//********************************************************************//
void RotationMatrix(float* R, float* eye, float* center, float* up)
{
    
    
    float XX[3], YY[3], ZZ[3];//图像空间的基向量
    ZZ[0] = eye[0] - center[0];
    ZZ[1] = eye[1] - center[1];
    ZZ[2] = eye[2] - center[2];
    CrossProd(XX, up, ZZ);
    CrossProd(YY, ZZ, XX);
    Normalize(XX, XX);
    Normalize(YY, YY);
    Normalize(ZZ, ZZ);
    //由图像空间基向量构成旋转矩阵
    R[0] = XX[0]; R[1] = YY[0]; R[2] = ZZ[0];
    R[3] = XX[1]; R[4] = YY[1]; R[5] = ZZ[1];
    R[6] = XX[2]; R[7] = YY[2]; R[8] = ZZ[2];
}
//合成像素值
//********************************************************************//
//rgba:合成颜色值
//x0,y0:二维图像像素坐标
//CData:分类后体数据
//Dim:体数据大小
//R:旋转矩阵(换用于图像空间到物体空间的转换)
//T:平移向量(同上)
//********************************************************************//
void Composite(float* rgba, int x0, int y0, float* CData, int* Dim, float* R, float* T)
{
    
    
    int stepsize = 1;//采样步长
    float cumcolor[4];//累计颜色值
    cumcolor[0] = cumcolor[1] = cumcolor[2] = cumcolor[3] = 0.0;
    float pos[3], dir[3];//投射光线起点、方向
    float startpos[3];//光线与包围盒近视点处的交点坐标
    float samplepos[3];//采样点坐标
    float samplecolor[4];//采样点颜色
    //采用平行投影,故在图像空间中投射光线的方向(0,0,-1),起点(x0,y0,0)
    pos[0] = x0; pos[1] = y0; pos[2] = 0;
    //将光线描述转换到物体空间
    //*********************************//
    dir[0] = -R[2]; dir[1] = -R[5]; dir[2] = -R[8];//光线方向在物体空间的表达
    MatrixmulVec(pos, R, pos);//旋转
    pos[0] += T[0];//平移
    pos[1] += T[1];
    pos[2] += T[2];
    //*********************************//
    if (Intersection(startpos, pos, dir, Dim))//判断光线与包围盒是否相交
    {
    
    
        samplepos[0] = startpos[0];
        samplepos[1] = startpos[1];
        samplepos[2] = startpos[2];
        while (CheckinBox(samplepos, Dim) && cumcolor[3] < 1)//当光线射出包围盒或累计不透明度超过1时中止合成
        {
    
    
            TrInterpolation(samplecolor, samplepos, CData, Dim);//三线性插值获得采样点处的颜色及不透明度
            //合成颜色及不透明度,采用的是从前到后的合成公式
            cumcolor[0] += samplecolor[0] * samplecolor[3] * (1 - cumcolor[3]);//R
            cumcolor[1] += samplecolor[1] * samplecolor[3] * (1 - cumcolor[3]);//G
            cumcolor[2] += samplecolor[2] * samplecolor[3] * (1 - cumcolor[3]);//B
            cumcolor[3] += samplecolor[3] * (1 - cumcolor[3]);    //A
            //下一个采样点
            samplepos[0] += dir[0] * stepsize;
            samplepos[1] += dir[1] * stepsize;
            samplepos[2] += dir[2] * stepsize;
        }
        rgba[0] = cumcolor[0];
        rgba[1] = cumcolor[1];
        rgba[2] = cumcolor[2];
        rgba[3] = cumcolor[3];
        return;
    }
    rgba[0] = rgba[1] = rgba[2] = rgba[3] = 0.0;//若光线与包围盒不相交,赋白色
}
//判断投射光线与包围盒是否相交(若相交,求靠近视点处的交点坐标)
//********************************************************************//
//思路:将包围盒6个面无限扩展,并分成3组,即平行于XOY,YOZ,ZOX平面的各有2个;
//求光线与6个平面的交点,从每组的2个交点中选出距离视点较近者,这样得到3个候
//选交点;从这3个候选交点中选出距离视点最远的那个。最后判断这个点是否落在包
//围盒内,若在,即为光线与包围盒的靠近视点处的交点。
//stratpos:靠近视点处的交点坐标
//pos:光线起点坐标
//dir:光线方向向量
//Dim:包围盒右上角坐标(左下角坐标为(0,0,0))
//********************************************************************//
bool Intersection(float* startpos, float* pos, float* dir, int* Dim)
{
    
    
    float nearscale = -1000000;
    float scale1, scale2;
    //光线与包围盒平行于YOZ的2个平面交点
    if ((dir[0] <= -EPSILON) || (dir[0] >= EPSILON))
    {
    
    
        scale1 = (0 - pos[0]) / dir[0];
        scale2 = (Dim[0] - 1 - pos[0]) / dir[0];
        //选出靠近视点的交点,并与当前候选点比较,保留较远者
        if (scale1 < scale2)
        {
    
    
            if (scale1 > nearscale)
                nearscale = scale1;
        }
        else
        {
    
    
            if (scale2 > nearscale)
                nearscale = scale2;
        }
    }
    //光线与包围盒平行于ZOX的2个平面交点
    if ((dir[1] <= -EPSILON) || (dir[1] >= EPSILON))
    {
    
    
        scale1 = (0 - pos[1]) / dir[1];
        scale2 = (Dim[1] - 1 - pos[1]) / dir[1];
        //选出靠近视点的交点,并与当前候选点比较,保留较远者
        if (scale1 < scale2)
        {
    
    
            if (scale1 > nearscale)
                nearscale = scale1;
        }
        else
        {
    
    
            if (scale2 > nearscale)
                nearscale = scale2;
        }
    }
    //光线与包围盒平行于XOY的2个平面交点
    if ((dir[2] <= -EPSILON) || (dir[2] >= EPSILON))
    {
    
    
        scale1 = (0 - pos[2]) / dir[2];
        scale2 = (Dim[2] - 1 - pos[2]) / dir[2];
        //选出靠近视点的交点,并与当前候选点比较,保留较远者
        if (scale1 < scale2)
        {
    
    
            if (scale1 > nearscale)
                nearscale = scale1;
        }
        else
        {
    
    
            if (scale2 > nearscale)
                nearscale = scale2;
        }
    }
    startpos[0] = pos[0] + nearscale * dir[0];
    startpos[1] = pos[1] + nearscale * dir[1];
    startpos[2] = pos[2] + nearscale * dir[2];
    return CheckinBox(startpos, Dim);  //判断该点是否在包围盒内
}
//三线性插值
//********************************************************************//
//rgba:插值结果
//pos:采样点坐标
//CData:分类后体数据
//Dim:体数据大小
//********************************************************************//
void TrInterpolation(float* rgba, float* pos, float* CData, int* Dim)
{
    
    
    int x0, y0, z0, x1, y1, z1;
    float fx, fy, fz;
    float v0, v1, v2, v3, v4, v5, v6;
    int Slicesize = Dim[0] * Dim[1] * 4;
    int Stepsize = Dim[0] * 4;
    x0 = (int)pos[0];//整数部分
    y0 = (int)pos[1];
    z0 = (int)pos[2];
    fx = pos[0] - x0;//小数部分
    fy = pos[1] - y0;
    fz = pos[2] - z0;
    x1 = x0 + 1;
    y1 = y0 + 1;
    z1 = z0 + 1;
    if (x1 >= Dim[0])x1 = Dim[0] - 1;//防止越界
    if (y1 >= Dim[1])y1 = Dim[1] - 1;
    if (z1 >= Dim[2])z1 = Dim[2] - 1;
    for (int i = 0; i < 4; i++)
    {
    
    
        //采样点处的值由邻近的8个点插值获得
        v0 = CData[z0 * Slicesize + y0 * Stepsize + 4 * x0 + i] * (1 - fx) + CData[z0 * Slicesize + y0 * Stepsize + 4 * x1 + i] * fx;
        v1 = CData[z0 * Slicesize + y1 * Stepsize + 4 * x0 + i] * (1 - fx) + CData[z0 * Slicesize + y1 * Stepsize + 4 * x1 + i] * fx;
        v2 = CData[z1 * Slicesize + y0 * Stepsize + 4 * x0 + i] * (1 - fx) + CData[z1 * Slicesize + y0 * Stepsize + 4 * x1 + i] * fx;
        v3 = CData[z1 * Slicesize + y1 * Stepsize + 4 * x0 + i] * (1 - fx) + CData[z1 * Slicesize + y1 * Stepsize + 4 * x1 + i] * fx;
        v4 = v0 * (1 - fy) + v1 * fy;
        v5 = v2 * (1 - fy) + v3 * fy;
        v6 = v4 * (1 - fz) + v5 * fz;
        if (v6 > 1)v6 = 1;//防止越界
        rgba[i] = v6;
    }
}
//判断点是否在包围盒内
//********************************************************************//
//point:点坐标
//Dim:包围盒右上角坐标(左下角坐标为(0,0,0))
//********************************************************************//
bool CheckinBox(float* point, int* Dim)
{
    
    
    if (point[0] < 0 || point[0] >= Dim[0] || point[1] < 0 || point[1] >= Dim[1] || point[2] < 0 || point[2] >= Dim[2])
        return false;
    else
        return true;
}
//矩阵与向量乘积
//********************************************************************//
//c=a*b
//c:输出向量
//a:输入矩阵
//b:输入向量
//********************************************************************//
void MatrixmulVec(float* c, float* a, float* b)
{
    
    
    float x, y, z;
    x = a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
    y = a[3] * b[0] + a[4] * b[1] + a[5] * b[2];
    z = a[6] * b[0] + a[7] * b[1] + a[8] * b[2];
    c[0] = x;
    c[1] = y;
    c[2] = z;
}
//向量叉乘
//********************************************************************//
//c=a x b
//c:输出向量
//a:输入向量
//b:输入向量
//********************************************************************//
void CrossProd(float* c, float* a, float* b)
{
    
    
    float x, y, z;
    x = a[1] * b[2] - b[1] * a[2];
    y = a[2] * b[0] - b[2] * a[0];
    z = a[0] * b[1] - b[0] * a[1];
    c[0] = x;
    c[1] = y;
    c[2] = z;
}
//向量归一化
//********************************************************************//
//norm:归一化结果
//a:输入向量
//********************************************************************//
void Normalize(float* norm, float* a)
{
    
    
    float len = sqrt(a[0] * a[0] + a[1] * a[1] + a[2] * a[2]);
    norm[0] = a[0] / len;
    norm[1] = a[1] / len;
    norm[2] = a[2] / len;
}
//显示函数

猜你喜欢

转载自blog.csdn.net/weixin_38616018/article/details/106886478