import numpy as np
import matplotlib.pyplot as plt
time_step = 0.02
period = 5.
time_vec = np.arange(0, 20, time_step)
sig = np.sin(2 * np.pi / period * time_vec) + \
0.5 * np.random.randn(time_vec.size)
from scipy import fftpack
sample_freq = fftpack.fftfreq(sig.size, d=time_step)
sig_fft = fftpack.fft(sig)
pidxs = np.where(sample_freq > 0)
freqs = sample_freq[pidxs]
power = np.abs(sig_fft)[pidxs]
freq = freqs[power.argmax()]
print(np.allclose(freq, 1./period) )
sig_fft[np.abs(sample_freq) > freq] = 0
main_sig = fftpack.ifft(sig_fft)
plt.figure()
plt.plot(time_vec, sig)
plt.plot(time_vec, main_sig, linewidth=3)
plt.title("signal")
plt.xlabel('Time [s]')
plt.ylabel('Amplitude')
plt.show()
