demo_reg.py
import torch
#data
import numpy as np
import re
ff = open("housing.data").readlines()
data = []
for item in ff:
out = re.sub(r"\s{2,}"," ",item).strip()
#print(out)
data.append(out.split(" "))
data = np.array(data).astype(np.float)
#print(data)
#print(data.shape)
Y = data[:, -1]
X = data[:, 0:-1]
X_train = X[0:496, :]
Y_train = Y[0:496]
X_test = X[496:, :]
Y_test = Y[496:]
print(X_train.shape)
print(Y_train.shape)
print(X_test.shape)
print(Y_test.shape)
#net
class Net(torch.nn.Module):
def __init__(self,n_feature,n_output):
super(Net,self).__init__()
self.hidden = torch.nn.Linear(n_feature,100)
self.predict = torch.nn.Linear(100,n_output)
def forward(self,x):
out = self.hidden(x)
out = torch.relu(out)
out = self.predict(out)
return out
#输入13,输出1
net = Net(13,1)
#loss
loss_func = torch.nn.MSELoss()
#optimiter
#optimizer = torch.optim.SGD(net.parameters(),lr = 0.0001)
optimizer = torch.optim.Adam(net.parameters(),lr = 0.001)
#training
for i in range(10000):
x_data = torch.tensor(X_train,dtype= torch.float32)
y_data = torch.tensor(Y_train, dtype = torch.float32)
pred = net.forward(x_data)
pred = torch.squeeze(pred)
loss = loss_func(pred,y_data) * 0.001
# print(pred.shape)
# print(y_data.shape)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print("ite:{},loss_train:{}".format(i,loss))
print(pred[0:10])
print(y_data[0:10])
# test
x_data = torch.tensor(X_test, dtype=torch.float32)
y_data = torch.tensor(Y_test, dtype=torch.float32)
pred = net.forward(x_data)
pred = torch.squeeze(pred)
loss_test = loss_func(pred, y_data) * 0.001
print("ite:{}, loss_test:{}".format(i, loss_test))
torch.save(net,"model/model.pkl")
# torch.load("")
# torch.save(net.state_dict(),"params.pkl")
# net.load_state_dict("")
demo_reg_inference
import torch
import numpy as np
import re
#net
class Net(torch.nn.Module):
def __init__(self,n_feature,n_output):
super(Net,self).__init__()
self.hidden = torch.nn.Linear(n_feature,100)
self.predict = torch.nn.Linear(100,n_output)
def forward(self,x):
out = self.hidden(x)
out = torch.relu(out)
out = self.predict(out)
return out
ff = open("housing.data").readlines()
data = []
for item in ff:
out = re.sub(r"\s{2,}"," ",item).strip()
#print(out)
data.append(out.split(" "))
data = np.array(data).astype(np.float)
#print(data)
#print(data.shape)
Y = data[:, -1]
X = data[:, 0:-1]
X_train = X[0:496, ...]
Y_train = Y[0:496, ...]
X_test = X[496:, ...]
Y_test = Y[496:, ...]
net = torch.load("model/model.pkl")
#loss
loss_func = torch.nn.MSELoss()
# test
x_data = torch.tensor(X_test, dtype=torch.float32)
y_data = torch.tensor(Y_test, dtype=torch.float32)
pred = net.forward(x_data)
pred = torch.squeeze(pred)
loss_test = loss_func(pred, y_data) * 0.001
print("loss_test:{}".format(loss_test))
D:\ANACONDA\envs\pytorch_gpu\python.exe E:/pytorch/004/demo_reg_inference.py
loss_test:0.00915122777223587