1JUC并发编程
java.util工具包
业务普通的线程代码Thread,效率不高
Runnable 没有返回值、效率相对于Callable较低!
2线程和进程
线程、进程,如果不能使用一句话说出来,就是不扎实!
1进程
进程是操作系统资源分配的基本单位,而线程是处理器任务调度和执行的基本单位
java 默认有几个线程? 两个——main线程、GC线程
java真的可以开启线程? 开不了的,Java是没有权限去开启线程、操作硬件的,这是一个native的一个本地方法,它调用的底层的C++代码。
2并发
并发:多个任务在同一个 CPU 核上,按细分的时间片轮流(交替)执行,从逻辑上来看那些任务是同时执行。**并发编程的本质:**充分利用CPU的资源!
3并行
并行:单位时间内,多个处理器或多核处理器同时处理多个任务,是真正意义上的“同时进行”。
CPU的获取方式:
public class Test {
public static void main(String[] args) {
System.out.println(Runtime.getRuntime().availableProcessors());
}
}
4线程的状态
public enum State {
//新生
NEW,
//运行
RUNNABLE,
//阻塞
BLOCKED,
//等待,死死的等
WAITING,
//超时等待
TIMED_WAITING,
//终止
TERMINATED;
}
5wait sleep区别
1、来自不同的类;wait => Object sleep => Thread
2、关于锁的释放;wait 会释放锁;sleep不会释放锁;
3、使用的范围是不同的;wait 必须在同步代码块中;sleep 可以在任何地方睡;
4、是否需要捕获异常;wait是不需要捕获异常;sleep必须要捕获异常;
5、用途不同:wait 通常被用于线程间交互/通信,sleep 通常被用于暂停执行。
3Lock(重点)
2Lock
公平锁: 十分公平,必须先来后到;
非公平锁: 十分不公平,可以插队;(Lock默认为非公平锁)
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public class Test {
public static void main(String[] args) {
final Ticket2 ticket = new Ticket2();
new Thread(() -> {
for (int i = 0; i < 40; i++) {
ticket.sale();
}
}, "A").start();
new Thread(() -> {
for (int i = 0; i < 40; i++) {
ticket.sale();
}
}, "B").start();
new Thread(() -> {
for (int i = 0; i < 40; i++) {
ticket.sale();
}
}, "C").start();
}
}
//lock三部曲
//1、 Lock lock=new ReentrantLock();
//2、 lock.lock() 加锁
//3、 finally=> 解锁:lock.unlock();
class Ticket2 {
private int number = 30; //在堆中
// 创建锁
Lock lock = new ReentrantLock();
//卖票的方式
public void sale() {
lock.lock(); // 开启锁
try {
if (number > 0) {
System.out.println(Thread.currentThread().getName() + "卖出了第" + (number--) + "张票剩余" + number + "张票");
}
}finally {
lock.unlock(); // 关闭锁
}
}
}
3JUC中的 Lock 接口是什么?对比Synchronized它有什么优势?
1、Synchronized 内置的Java关键字,Lock是一个Java类
2、Synchronized 无法判断获取锁的状态,Lock可以判断是否获取到锁**【优势1】**
3、Synchronized 会自动释放锁,lock必须要手动加锁和手动释放锁!可能会遇到死锁
4、Synchronized 线程1(获得锁->阻塞)、线程2(等待);lock就不一定会一直等待下去,lock会有一个trylock去尝试获取锁,并在无法获取锁的时候立即返回或者等待一段时间 【优势2】
5、Synchronized 是可重入锁,不可以中断的,非公平的;Lock,可重入的,可以判断锁,可以自己设置公平锁和非公平锁;【优势3】
6、Synchronized 适合锁少量的代码同步问题,Lock适合锁大量的同步代码;
4生产者和消费者问题
1Synchronzied 版本
public class ConsumeAndProduct {
public static void main(String[] args) {
Data data = new Data();
new Thread(() -> {
for (int i = 0; i < 10; i++) {
try {
data.increment();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}, "A").start();
new Thread(() -> {
for (int i = 0; i < 10; i++) {
try {
data.decrement();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}, "B").start();
}
}
class Data {
private int num = 0;
// +1
public synchronized void increment() throws InterruptedException {
// 判断等待
if (num != 0) {
this.wait();
}
num++;
System.out.println(Thread.currentThread().getName() + "=>" + num);
// 通知其他线程 +1 执行完毕
this.notifyAll();
}
// -1
public synchronized void decrement() throws InterruptedException {
// 判断等待
if (num == 0) {
this.wait();
}
num--;
System.out.println(Thread.currentThread().getName() + "=>" + num);
// 通知其他线程 -1 执行完毕
this.notifyAll();
}
}
A=>1
B=>0
A=>1
B=>0
A=>1
B=>0
A=>1
B=>0
A=>1
B=>0
A=>1
B=>0
A=>1
B=>0
A=>1
B=>0
A=>1
B=>0
A=>1
B=>0
存在问题(虚假唤醒)
问题,如果有四个线程,会出现虚假唤醒
解决方式 ,if 改为while即可,防止虚假唤醒 wait是会释放锁的!!!
结论:就是用if判断的话,唤醒后线程会从wait之后的代码开始运行,但是不会重新判断if条件,直接继续运行if代码块之后的代码,而如果使用while的话,也会从wait之后的代码运行,但是唤醒后会重新判断循环条件,如果不成立再执行while代码块之后的代码块,成立的话继续wait。
这也就是为什么用while而不用if的原因了,因为线程被唤醒后,执行开始的地方是wait之后
2Lock版
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public class LockCAP {
public static void main(String[] args) {
Data2 data = new Data2();
new Thread(() -> {
for (int i = 0; i < 10; i++) {
try {
data.increment();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}, "A").start();
new Thread(() -> {
for (int i = 0; i < 10; i++) {
try {
data.decrement();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}, "B").start();
new Thread(() -> {
for (int i = 0; i < 10; i++) {
try {
data.increment();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}, "C").start();
new Thread(() -> {
for (int i = 0; i < 10; i++) {
try {
data.decrement();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}, "D").start();
}
}
class Data2 {
private int num = 0;
Lock lock = new ReentrantLock();
Condition condition = lock.newCondition();
// +1
public void increment() throws InterruptedException {
lock.lock();
try {
// 判断等待
while (num != 0) {
condition.await();
}
num++;
System.out.println(Thread.currentThread().getName() + "=>" + num);
// 通知其他线程 +1 执行完毕
condition.signalAll();
}finally {
lock.unlock();
}
}
// -1
public void decrement() throws InterruptedException {
lock.lock();
try {
// 判断等待
while (num == 0) {
condition.await();
}
num--;
System.out.println(Thread.currentThread().getName() + "=>" + num);
// 通知其他线程 +1 执行完毕
condition.signalAll();
}finally {
lock.unlock();
}
}
}
Condition的优势 : 精准的通知和唤醒的线程!如果我们要指定通知的下一个进行顺序怎么办呢? 我们可以使用Condition来指定通知进程
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
/**
* Description:
* A 执行完 调用B
* B 执行完 调用C
* C 执行完 调用A
**/
public class ConditionDemo {
public static void main(String[] args) {
Data3 data3 = new Data3();
new Thread(() -> {
for (int i = 0; i < 10; i++) {
data3.printA();
}
},"A").start();
new Thread(() -> {
for (int i = 0; i < 10; i++) {
data3.printB();
}
},"B").start();
new Thread(() -> {
for (int i = 0; i < 10; i++) {
data3.printC();
}
},"C").start();
}
}
class Data3 {
private Lock lock = new ReentrantLock();
private Condition condition1 = lock.newCondition();
private Condition condition2 = lock.newCondition();
private Condition condition3 = lock.newCondition();
private int num = 1; // 1A 2B 3C
public void printA() {
lock.lock();
try {
// 业务代码 判断 -> 执行 -> 通知
// 阻塞条件
while (num != 1) {
condition1.await();
}
System.out.println(Thread.currentThread().getName() + "==> AAAA" );
num = 2;
condition2.signal();
}catch (Exception e) {
e.printStackTrace();
}finally {
lock.unlock();
}
}
public void printB() {
lock.lock();
try {
// 业务代码 判断 -> 执行 -> 通知
while (num != 2) {
condition2.await();
}
System.out.println(Thread.currentThread().getName() + "==> BBBB" );
num = 3;
condition3.signal();
}catch (Exception e) {
e.printStackTrace();
}finally {
lock.unlock();
}
}
public void printC() {
lock.lock();
try {
// 业务代码 判断 -> 执行 -> 通知
while (num != 3) {
condition3.await();
}
System.out.println(Thread.currentThread().getName() + "==> CCCC" );
num = 1;
condition1.signal();
}catch (Exception e) {
e.printStackTrace();
}finally {
lock.unlock();
}
}
}
A==> AAAA
B==> BBBB
C==> CCCC
A==> AAAA
B==> BBBB
C==> CCCC
A==> AAAA
B==> BBBB
C==> CCCC
。。。。。。
5 8锁现象
如何判断锁的是谁!锁到底锁的是谁?
锁会锁住:对象、Class
深刻理解我们的锁
问题1
两个同步方法,先执行发短信还是打电话
import java.util.concurrent.TimeUnit;
public class Test {
public static void main(String[] args) {
Phone phone = new Phone();
new Thread(() -> {
phone.sendMs(); }).start();
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
new Thread(() -> {
phone.call(); }).start();
}
}
class Phone {
public synchronized void sendMs() {
System.out.println("发短信");
}
public synchronized void call() {
System.out.println("打电话");
}
}
输出结果为
发短信
打电话
问题2:
我们再来看:我们让发短信 延迟4s
import java.util.concurrent.TimeUnit;
public class Test {
public static void main(String[] args) {
Phone phone = new Phone();
new Thread(() -> {
phone.sendMs(); }).start();
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
new Thread(() -> {
phone.call(); }).start();
}
}
class Phone {
public synchronized void sendMs() {
try {
TimeUnit.SECONDS.sleep(4);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("发短信");
}
public synchronized void call() {
System.out.println("打电话");
}
}
现在结果是什么呢?
结果:还是先发短信,然后再打电话!
why?
原因:并不是顺序执行,而是synchronized 锁住的对象是方法的调用!对于两个方法用的是同一个锁,谁先拿到谁先执行,另外一个等待
问题三
加一个普通方法
import java.util.concurrent.TimeUnit;
public class Test {
public static void main(String[] args) throws InterruptedException {
Phone phone = new Phone();
new Thread(() -> {
try {
phone.sendMs();
} catch (InterruptedException e) {
e.printStackTrace();
}
}).start();
TimeUnit.SECONDS.sleep(1);
new Thread(() -> {
phone.hello(); }).start();
}
}
class Phone {
public synchronized void sendMs() throws InterruptedException {
TimeUnit.SECONDS.sleep(4);
System.out.println("发短信");
}
public synchronized void call() {
System.out.println("打电话");
}
public void hello() {
System.out.println("hello");
}
}
输出结果为
hello
发短信
原因:hello是一个普通方法,不受synchronized锁的影响,不用等待锁的释放
问题四
如果我们使用的是两个对象,一个调用发短信,一个调用打电话,那么整个顺序是怎么样的呢?
import java.util.concurrent.TimeUnit;
public class Test {
public static void main(String[] args) throws InterruptedException {
Phone phone1 = new Phone();
Phone phone2 = new Phone();
new Thread(() -> {
try {
phone1.sendMs();
} catch (InterruptedException e) {
e.printStackTrace();
}
}).start();
TimeUnit.SECONDS.sleep(1);
new Thread(() -> {
phone2.call(); }).start();
}
}
class Phone {
public synchronized void sendMs() throws InterruptedException {
TimeUnit.SECONDS.sleep(4);
System.out.println("发短信");
}
public synchronized void call() {
System.out.println("打电话");
}
public void hello() {
System.out.println("hello");
}
}
输出结果
打电话
发短信
原因:两个对象两把锁,不会出现等待的情况,发短信睡了4s,所以先执行打电话
问题五、六
如果我们把synchronized的方法加上static变成静态方法!那么顺序又是怎么样的呢?
(1)我们先来使用一个对象调用两个方法!
import java.util.concurrent.TimeUnit;
public class Test {
public static void main(String[] args) throws InterruptedException {
Phone phone = new Phone();
new Thread(() -> {
try {
phone.sendMs();
} catch (InterruptedException e) {
e.printStackTrace();
}
}).start();
TimeUnit.SECONDS.sleep(1);
new Thread(() -> {
phone.call(); }).start();
}
}
class Phone {
public static synchronized void sendMs() throws InterruptedException {
TimeUnit.SECONDS.sleep(4);
System.out.println("发短信");
}
public static synchronized void call() {
System.out.println("打电话");
}
}
答案是:先发短信,后打电话
(2)如果我们使用两个对象调用两个方法!
import java.util.concurrent.TimeUnit;
public class Test {
public static void main(String[] args) throws InterruptedException {
Phone phone1 = new Phone();
Phone phone2 = new Phone();
new Thread(() -> {
try {
phone1.sendMs();
} catch (InterruptedException e) {
e.printStackTrace();
}
}).start();
TimeUnit.SECONDS.sleep(1);
new Thread(() -> {
phone2.call(); }).start();
}
}
class Phone {
public static synchronized void sendMs() throws InterruptedException {
TimeUnit.SECONDS.sleep(4);
System.out.println("发短信");
}
public static synchronized void call() {
System.out.println("打电话");
}
}
答案是:还是先发短信,后打电话
原因是什么呢? 为什么加了static就始终前面一个对象先执行呢!为什么后面会等待呢?
原因是:对于static静态方法来说,对于整个类Class来说只有一份,对于不同的对象使用的是同一份方法,相当于这个方法是属于这个类的,如果静态static方法使用synchronized锁定,那么这个synchronized锁会锁住整个对象!不管多少个对象,对于静态的锁都只有一把锁,谁先拿到这个锁就先执行,其他的进程都需要等待!
问题七
如果我们使用一个静态同步方法、一个同步方法、一个对象调用顺序是什么?
import java.util.concurrent.TimeUnit;
public class Test {
public static void main(String[] args) throws InterruptedException {
Phone phone = new Phone();
new Thread(() -> {
try {
phone.sendMs();
} catch (InterruptedException e) {
e.printStackTrace();
}
}).start();
TimeUnit.SECONDS.sleep(1);
new Thread(() -> {
phone.call(); }).start();
}
}
class Phone {
public static synchronized void sendMs() throws InterruptedException {
TimeUnit.SECONDS.sleep(4);
System.out.println("发短信");
}
public synchronized void call() {
System.out.println("打电话");
}
}
输出结果
打电话
发短信
原因:因为一个锁的是Class类的模板,一个锁的是对象的调用者。所以不存在等待,直接运行。
问题八
如果我们使用一个静态同步方法、一个同步方法、两个对象调用顺序是什么?
import java.util.concurrent.TimeUnit;
public class Test {
public static void main(String[] args) throws InterruptedException {
Phone phone1 = new Phone();
Phone phone2 = new Phone();
new Thread(() -> {
try {
phone1.sendMs();
} catch (InterruptedException e) {
e.printStackTrace();
}
}).start();
TimeUnit.SECONDS.sleep(1);
new Thread(() -> {
phone2.call(); }).start();
}
}
class Phone {
public static synchronized void sendMs() throws InterruptedException {
TimeUnit.SECONDS.sleep(4);
System.out.println("发短信");
}
public void call() {
System.out.println("打电话");
}
}
输出结果
打电话
发短信
原因:两把锁锁的不是同一个东西
小结
new 出来的 this 是具体的一个对象
static Class 是唯一的一个模板
6集合不安全
1List 不安全
import java.util.ArrayList;
import java.util.List;
import java.util.UUID;
//java.util.ConcurrentModificationException 并发修改异常!
public class Test {
public static void main(String[] args) {
List<Object> arrayList = new ArrayList<>();
for(int i=1;i<=10;i++){
new Thread(()->{
arrayList.add(UUID.randomUUID().toString().substring(0,5));
System.out.println(arrayList);
},String.valueOf(i)).start();
}
}
}
会导致 java.util.ConcurrentModificationException 并发修改异常!
ArrayList 在并发情况下是不安全的
import java.util.List;
import java.util.UUID;
import java.util.concurrent.CopyOnWriteArrayList;
public class Test {
public static void main(String[] args) {
/**
* 解决方案
* 1. List<String> list = new Vector<>();
* 2. List<String> list = Collections.synchronizedList(new ArrayList<>());
* 3. List<String> list = new CopyOnWriteArrayList<>();
*/
List<String> list = new CopyOnWriteArrayList<>();
for (int i = 1; i <=10; i++) {
new Thread(() -> {
list.add(UUID.randomUUID().toString().substring(0,5));
System.out.println(list);
},String.valueOf(i)).start();
}
}
}
CopyOnWriteArrayList:写入时复制! COW 计算机程序设计领域的一种优化策略
核心思想是,如果有多个调用者(Callers)同时要求相同的资源(如内存或者是磁盘上的数据存储),他们会共同获取相同的指针指向相同的资源,直到某个调用者视图修改资源内容时,系统才会真正复制一份专用副本(private copy)给该调用者,而其他调用者所见到的最初的资源仍然保持不变。这过程对其他的调用者都是透明的(transparently)。此做法主要的优点是如果调用者没有修改资源,就不会有副本(private copy)被创建,因此多个调用者只是读取操作时可以共享同一份资源。
读的时候不需要加锁,如果读的时候有多个线程正在向CopyOnWriteArrayList添加数据,读还是会读到旧的数据,因为写的时候不会锁住旧的CopyOnWriteArrayList。
CopyOnWriteArrayList 的设计思想
1 读写分离,读和写分开
2 最终一致性
3 使用另外开辟空间的思路,来解决并发冲突
CopyOnWriteArrayList比Vector厉害在哪里?
Vector底层是使用synchronized关键字来实现的:效率特别低下。
CopyOnWriteArrayList使用的是Lock锁,效率会更加高效!
2set 不安全
Set和List同理可得: 多线程情况下,普通的Set集合是线程不安全的;
解决方案还是两种:
使用Collections工具类的synchronized包装的Set类
使用CopyOnWriteArraySet 写入复制的JUC解决方案
public class SetTest {
public static void main(String[] args) {
/**
* 1. Set<String> set = Collections.synchronizedSet(new HashSet<>());
* 2. Set<String> set = new CopyOnWriteArraySet<>();
*/
// Set<String> set = new HashSet<>();
Set<String> set = new CopyOnWriteArraySet<>();
for (int i = 1; i <= 30; i++) {
new Thread(() -> {
set.add(UUID.randomUUID().toString().substring(0,5));
System.out.println(set);
},String.valueOf(i)).start();
}
}
}
HashSet底层是什么?
hashSet底层就是一个HashMap;
3Map不安全
HashMap的相信介绍我们在集合章节有解释!!!!
默认加载因子是0.75,默认的初始容量是16 **(这里是有问题)**见我们的java面试题专题中详细解答
同样的HashMap基础类也存在并发修改异常!
public class MapTest {
public static void main(String[] args) {
//map 是这样用的吗? 不是,工作中不使用这个
//默认等价什么? new HashMap<>(16,0.75);
/**
* 解决方案
* 1. Map<String, String> map = Collections.synchronizedMap(new HashMap<>());
* Map<String, String> map = new ConcurrentHashMap<>();
*/
Map<String, String> map = new ConcurrentHashMap<>();
//加载因子、初始化容量
for (int i = 1; i < 100; i++) {
new Thread(()->{
map.put(Thread.currentThread().getName(), UUID.randomUUID().toString().substring(0,5));
System.out.println(map);
},String.valueOf(i)).start();
}
}
}
什么是ConcurrentHashMap?
ConcurrentHashMap是Java中的一个线程安全且高效的HashMap实现。平时涉及高并发如果要用map结构,那第一时间想到的就是它。相对于hashmap来说,ConcurrentHashMap就是线程安全的map,其中利用了锁分段的思想提高了并发度。
那么它到底是如何实现线程安全的?
JDK 1.6版本关键要素:
segment继承了ReentrantLock充当锁的角色,为每一个segment提供了线程安全的保障;
segment维护了哈希散列表的若干个桶,每个桶由HashEntry构成的链表。
JDK1.8后,ConcurrentHashMap抛弃了原有的Segment 分段锁,而采用了 CAS + synchronized 来保证并发安全性。
7Callable
说一下 runnable 和 callable 有什么区别?
相同点
1 都是接口
2 都可以编写多线程程序
3 都采用Thread.start()启动线程
主要区别
1 Runnable 接口 run 方法无返回值;Callable 接口 call 方法有返回值,是个泛型,和Future、FutureTask配合可以用来获取异步执行的结果
2 Runnable 接口 run 方法只能抛出运行时异常,且无法捕获处理;Callable 接口 call 方法允许抛出异常,可以获取异常信息
注:Callalbe接口支持返回执行结果,需要调用FutureTask.get()得到,此方法会阻塞主进程的继续往下执行,如果不调用不会阻塞。
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.FutureTask;
public class Test {
public static void main(String[] args) throws ExecutionException, InterruptedException {
for (int i = 1; i < 10; i++) {
MyThread1 myThread1 = new MyThread1();
FutureTask<Integer> futureTask = new FutureTask<>(myThread1);
// 放入Thread中使用,结果会被缓存
new Thread(futureTask,String.valueOf(i)).start();
// 这个get方法可能会被阻塞,如果在call方法中是一个耗时的方法,所以一般情况我们会把这个放在最后,或者使用异步通信
int a = futureTask.get();
System.out.println("返回值:" + a);
}
}
}
class MyThread1 implements Callable<Integer> {
@Override
public Integer call() throws Exception {
System.out.println("call()");
return 1024;
}
}
8常用的辅助类
1CountDownLatch 减法计数器
import java.util.concurrent.CountDownLatch;
public class Test {
public static void main(String[] args) throws InterruptedException {
// 总数是6 必须要执行任务的时候,再使用!
CountDownLatch countDownLatch = new CountDownLatch(6);
for (int i = 1; i <= 6; i++) {
new Thread(() -> {
System.out.println(Thread.currentThread().getName() + "==> Go Out");
countDownLatch.countDown(); // 每个线程都数量 -1
},String.valueOf(i)).start();
}
countDownLatch.await(); // 等待计数器归零 然后向下执行
System.out.println("close door");
}
}
主要方法:
countDown 减一操作;
await 等待计数器归零
await 等待计数器归零,就唤醒,再继续向下运行
2CyclicBarrier 加法计数器
import java.util.concurrent.BrokenBarrierException;
import java.util.concurrent.CyclicBarrier;
public class Test {
public static void main(String[] args) {
// 主线程
//public CyclicBarrier(int parties, Runnable barrierAction)
CyclicBarrier cyclicBarrier = new CyclicBarrier(7,() -> {
System.out.println("召唤神龙");
});
for (int i = 1; i <= 7; i++) {
// 子线程
final int finalI = i;
new Thread(() -> {
System.out.println(Thread.currentThread().getName() + "收集了第" + finalI + "颗龙珠");
try {
cyclicBarrier.await(); // 加法计数 等待
} catch (InterruptedException e) {
e.printStackTrace();
} catch (BrokenBarrierException e) {
e.printStackTrace();
}
}).start();
}
}
}
3Semaphore (信号量)限流
import java.util.concurrent.Semaphore;
import java.util.concurrent.TimeUnit;
public class Test {
public static void main(String[] args) {
// 线程数量,停车位,限流
Semaphore semaphore = new Semaphore(3);
for (int i = 0; i <= 6; i++) {
new Thread(() -> {
// acquire() 得到
try {
semaphore.acquire();
System.out.println(Thread.currentThread().getName() + "抢到车位");
TimeUnit.SECONDS.sleep(2);
System.out.println(Thread.currentThread().getName() + "离开车位");
}catch (Exception e) {
e.printStackTrace();
}finally {
semaphore.release(); // release() 释放
}
}).start();
}
}
}
Thread-0抢到车位
Thread-1抢到车位
Thread-2抢到车位
Thread-1离开车位
Thread-0离开车位
Thread-3抢到车位
Thread-4抢到车位
Thread-2离开车位
Thread-5抢到车位
Thread-4离开车位
Thread-5离开车位
Thread-3离开车位
Thread-6抢到车位
Thread-6离开车位
原理:
semaphore.acquire()获得资源,如果资源已经使用完了,就等待资源释放后再进行使用!
semaphore.release()释放,会将当前的信号量释放+1,然后唤醒等待的线程!
作用: 多个共享资源互斥的使用! 并发限流,控制最大的线程数!