坐标系定义
球坐标系 ( R , θ , ϕ ) (R,\theta,\phi) (R,θ,ϕ),直角坐标系 ( x , y , z ) (x,y,z) (x,y,z)
x = R sin θ cos ϕ , y = R sin θ cos ϕ , z = R cos θ x=R\sin\theta\cos\phi,\;y=R\sin\theta\cos\phi,\;z=R\cos\theta x=Rsinθcosϕ,y=Rsinθcosϕ,z=Rcosθ
球坐标系和直角坐标系单位矢量转换
( R ^ , θ ^ , ϕ ^ \hat{R},\hat{\theta},\hat{\phi} R^,θ^,ϕ^)为球坐标系的局部直角坐标单位矢量, ( x ^ , y ^ , z ^ ) (\hat{x},\hat{y},\hat{z}) (x^,y^,z^)为全局坐标单位矢量
( R ^ θ ^ ϕ ^ ) = ( sin θ cos ϕ sin θ sin ϕ cos θ cos θ cos ϕ cos θ sin ϕ − sin θ − sin θ cos φ 0 ) ( x ^ y ^ z ^ ) \left(\begin{array}{c}\hat{R}\\\hat{\theta}\\\hat{\phi}\end{array}\right)=\left(\begin{array}{ccc}\sin\theta\cos\phi&\sin\theta\sin\phi&\cos\theta\\\cos\theta\cos\phi&\cos\theta\sin\phi&-\sin\theta\\-\sin\theta&\cos\varphi&0\end{array}\right)\left(\begin{array}{c}\hat{x}\\\hat{y}\\\hat{z}\end{array}\right) ⎝⎛R^θ^ϕ^⎠⎞=⎝⎛sinθcosϕcosθcosϕ−sinθsinθsinϕcosθsinϕcosφcosθ−sinθ0⎠⎞⎝⎛x^y^z^⎠⎞
记 A = ( sin θ cos ϕ sin θ sin ϕ cos θ cos θ cos ϕ cos θ sin ϕ − sin θ − sin θ cos φ 0 ) \mathbf{A}=\left(\begin{array}{ccc}\sin\theta\cos\phi&\sin\theta\sin\phi&\cos\theta\\\cos\theta\cos\phi&\cos\theta\sin\phi&-\sin\theta\\-\sin\theta&\cos\varphi&0\end{array}\right) A=⎝⎛sinθcosϕcosθcosϕ−sinθsinθsinϕcosθsinϕcosφcosθ−sinθ0⎠⎞, A \mathbf{A} A是正交矩阵, A T A = I \mathbf{A}^T\mathbf{A}=\mathbf{I} ATA=I
那么 ( R ^ θ ^ ϕ ^ ) = A ( x ^ y ^ z ^ ) \left(\begin{array}{c}\hat{R}\\\hat{\theta}\\\hat{\phi}\end{array}\right)=\mathbf{A}\left(\begin{array}{c}\hat{x}\\\hat{y}\\\hat{z}\end{array}\right) ⎝⎛R^θ^ϕ^⎠⎞=A⎝⎛x^y^z^⎠⎞, ( x ^ y ^ z ^ ) = A T ( R ^ θ ^ ϕ ^ ) \left(\begin{array}{c}\hat{x}\\\hat{y}\\\hat{z}\end{array}\right)=\mathbf{A}^T\left(\begin{array}{c}\hat{R}\\\hat{\theta}\\\hat{\phi}\end{array}\right) ⎝⎛x^y^z^⎠⎞=AT⎝⎛R^θ^ϕ^⎠⎞
不同坐标系的矢量转换
矢量 g = g x x ^ + g y y ^ + g z z ^ = ( x ^ y ^ z ^ ) ( g x g y g z ) = ( R ^ θ ^ ϕ ^ ) A ( g x g y g z ) \mathbf{g}=g_x\hat{x}+g_y\hat{y}+g_z\hat{z}=\left(\begin{array}{ccc}\hat{x}&\hat{y}&\hat{z}\end{array}\right)\left(\begin{array}{c}g_x\\g_y\\g_z\end{array}\right)=\left(\begin{array}{ccc}\hat{R}&\hat{\theta}&\hat{\phi}\end{array}\right)\mathbf{A}\left(\begin{array}{c}g_x\\g_y\\g_z\end{array}\right) g=gxx^+gyy^+gzz^=(x^y^z^)⎝⎛gxgygz⎠⎞=(R^θ^ϕ^)A⎝⎛gxgygz⎠⎞
所以 ( g R g θ g ϕ ) = A ( g x g y g z ) \left(\begin{array}{c}g_R\\g_{\theta}\\g_{\phi}\end{array}\right)=\mathbf{A}\left(\begin{array}{c}g_{x}\\g_{y}\\g_{z}\end{array}\right) ⎝⎛gRgθgϕ⎠⎞=A⎝⎛gxgygz⎠⎞
不同坐标系的张量转换
直角坐标系下的张量 T c = ( T x x T x y T x z T y x T y y T y z T z x T z y T z z ) \mathbf{T}_{c}=\left(\begin{array}{ccc}T_{xx}&T_{xy}&T_{xz}\\T_{yx}&T_{yy}&T_{yz}\\T_{zx}&T_{zy}&T_{zz}\end{array}\right) Tc=⎝⎛TxxTyxTzxTxyTyyTzyTxzTyzTzz⎠⎞
写成分量形式
T = T x x x ^ x ^ + T x y x ^ y ^ + T x z x ^ z ^ + T y x y ^ x ^ + T y y y ^ y ^ + T y z y ^ z ^ + T z x z ^ x ^ + T z y z ^ y ^ + T z z z ^ z ^ = ( x ^ y ^ z ^ ) ( T x x T x y T x z T y x T y y T y z T z x T z y T z z ) ( x ^ y ^ z ^ ) \mathbf{T}=\begin{array}{c}T_{xx}\hat{x}\hat{x}+T_{xy}\hat{x}\hat{y}+T_{xz}\hat{x}\hat{z}\\+T_{yx}\hat{y}\hat{x}+T_{yy}\hat{y}\hat{y}+T_{yz}\hat{y}\hat{z}\\+T_{zx}\hat{z}\hat{x}+T_{zy}\hat{z}\hat{y}+T_{zz}\hat{z}\hat{z}\end{array}=\left(\begin{array}{ccc}\hat{x}&\hat{y}&\hat{z}\end{array}\right)\left(\begin{array}{ccc}T_{xx}&T_{xy}&T_{xz}\\T_{yx}&T_{yy}&T_{yz}\\T_{zx}&T_{zy}&T_{zz}\end{array}\right)\left(\begin{array}{c}\hat{x}\\\hat{y}\\\hat{z}\end{array}\right) T=Txxx^x^+Txyx^y^+Txzx^z^+Tyxy^x^+Tyyy^y^+Tyzy^z^+Tzxz^x^+Tzyz^y^+Tzzz^z^=(x^y^z^)⎝⎛TxxTyxTzxTxyTyyTzyTxzTyzTzz⎠⎞⎝⎛x^y^z^⎠⎞
代入 ( x ^ y ^ z ^ ) = A T ( R ^ θ ^ ϕ ^ ) \left(\begin{array}{c}\hat{x}\\\hat{y}\\\hat{z}\end{array}\right)=\mathbf{A}^T\left(\begin{array}{c}\hat{R}\\\hat{\theta}\\\hat{\phi}\end{array}\right) ⎝⎛x^y^z^⎠⎞=AT⎝⎛R^θ^ϕ^⎠⎞得
T = ( R ^ θ ^ ϕ ^ ) A ( T x x T x y T x z T y x T y y T y z T z x T z y T z z ) A T ( R ^ θ ^ ϕ ^ ) \mathbf{T}=\left(\begin{array}{ccc}\hat{R}&\hat{\theta}&\hat{\phi}\end{array}\right)\mathbf{A}\left(\begin{array}{ccc}T_{xx}&T_{xy}&T_{xz}\\T_{yx}&T_{yy}&T_{yz}\\T_{zx}&T_{zy}&T_{zz}\end{array}\right)\mathbf{A}^T\left(\begin{array}{c}\hat{R}\\\hat{\theta}\\\hat{\phi}\end{array}\right) T=(R^θ^ϕ^)A⎝⎛TxxTyxTzxTxyTyyTzyTxzTyzTzz⎠⎞AT⎝⎛R^θ^ϕ^⎠⎞
所以,球坐标系下张量为
T s = A T c A T \mathbf{T}_s=\mathbf{A}\mathbf{T}_c\mathbf{A}^T Ts=ATcAT
通过矢量的方向导数推导梯度张量的坐标系转换关系
u ^ \hat{u} u^是一个空间中的任意方向的单位矢量
矢量 g \mathbf{g} g沿着 u ^ \hat{\mathbf{u}} u^的方向导数为
g u = ( u ^ ⋅ ∇ ) g \mathbf{g}_u=(\hat{\mathbf{u}}\cdot \nabla)\mathbf{g} gu=(u^⋅∇)g
( u ^ ⋅ ∇ ) g = ( u x ∂ ∂ x + u y ∂ ∂ y + u z ∂ ∂ z ) g = ( u x ∂ g x ∂ x + u y ∂ g x ∂ y + u z ∂ g x ∂ z ) x ^ + ( u x ∂ g y ∂ x + u y ∂ g y ∂ y + u z ∂ g y ∂ z ) y ^ + ( u x ∂ g z ∂ x + u y ∂ g z ∂ y + u z ∂ g z ∂ z ) z ^ = ( T x x T x y T x z T y x T y y T y z T z x T z y T z z ) ( u x u y u z ) = T u \begin{aligned}(\hat{\mathbf{u}}\cdot \nabla)\mathbf{g}=&(u_x\frac{\partial}{\partial x}+u_y\frac{\partial}{\partial y}+u_z\frac{\partial}{\partial z})\mathbf{g}\\ =&(u_x\frac{\partial g_x}{\partial x}+u_y\frac{\partial g_x}{\partial y}+u_z\frac{\partial g_x}{\partial z})\hat{x}\\ &+(u_x\frac{\partial g_y}{\partial x}+u_y\frac{\partial g_y}{\partial y}+u_z\frac{\partial g_y}{\partial z})\hat{y}\\ &+(u_x\frac{\partial g_z}{\partial x}+u_y\frac{\partial g_z}{\partial y}+u_z\frac{\partial g_z}{\partial z})\hat{z}\\ =&\left(\begin{array}{ccc}T_{xx}&T_{xy}&T_{xz}\\T_{yx}&T_{yy}&T_{yz}\\T_{zx}&T_{zy}&T_{zz}\end{array}\right)\left(\begin{array}{c}u_{x}\\u_{y}\\u_{z}\end{array}\right)=\mathbf{T}\mathbf{u}\end{aligned} (u^⋅∇)g===(ux∂x∂+uy∂y∂+uz∂z∂)g(ux∂x∂gx+uy∂y∂gx+uz∂z∂gx)x^+(ux∂x∂gy+uy∂y∂gy+uz∂z∂gy)y^+(ux∂x∂gz+uy∂y∂gz+uz∂z∂gz)z^⎝⎛TxxTyxTzxTxyTyyTzyTxzTyzTzz⎠⎞⎝⎛uxuyuz⎠⎞=Tu
那么
g u ( s ) = A g u ( c ) \mathbf{g}_u^{(s)}=\mathbf{A}\mathbf{g}_u^{(c)} gu(s)=Agu(c)
上标 ( s ) (s) (s)表示球坐标, ( c ) (c) (c)表示直角坐标
又
g u ( c ) = T c u ^ c \mathbf{g}_u^{(c)}=\mathbf{T}_c\mathbf{\hat{u}}_c gu(c)=Tcu^c
u ^ c = A T u ^ s \mathbf{\hat{u}}_c=\mathbf{A}^T\mathbf{\hat{u}}_s u^c=ATu^s
所以
g u ( s ) = A T c A T u ^ s \mathbf{g}_u^{(s)}=\mathbf{A}\mathbf{T}_c\mathbf{A}^T\mathbf{\hat{u}}_s gu(s)=ATcATu^s
在球坐标系下也有
g u ( s ) = T s u ^ s \mathbf{g}_u^{(s)}=\mathbf{T}_s\mathbf{\hat{u}}_s gu(s)=Tsu^s
所以
T s = A T c A T \mathbf{T}_s=\mathbf{A}\mathbf{T}_c\mathbf{A}^T Ts=ATcAT