LeetCode110题:给定一个二叉树,判断它是否是高度平衡的二叉树(两种方法求解)时间复杂度分别为0(n)、0(n²)

  1. 平衡二叉树
    给定一个二叉树,判断它是否是高度平衡的二叉树。

本题中,一棵高度平衡二叉树定义为:

一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1 。
示例 1:
在这里插入图片描述

输入:root = [3,9,20,null,null,15,7]
输出:true

示例 2:
在这里插入图片描述

输入:root = [1,2,2,3,3,null,null,4,4]
输出:false

示例 3:

输入:root = []
输出:true

提示:

树中的节点数在范围 [0, 5000]-104 <= Node.val <= 104

方法一:时间复杂度为0(n²)

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    
    
    public int maxDepth(TreeNode root) {
    
    
        if(root == null) return 0;
        int leftHeight = maxDepth(root.left);
        int rightHeight = maxDepth(root.right);
        return leftHeight  > rightHeight  ?
                leftHeight +1 : rightHeight +1;
    }
    public boolean isBalanced(TreeNode root) {
    
    
        if(root == null) {
    
    
            return true;
        }
        int leftHeight = maxDepth(root.left);
        int rightHeight = maxDepth(root.right);
        return Math.abs(leftHeight-rightHeight) <= 1 
        && isBalanced(root.left) && isBalanced(root.right);
    }

}

方法二:时间复杂度为0(n)

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    
    
    public int hight(TreeNode root) {
    
    
        if(root == null) return 0;
        int leftHight = hight(root.left);
        int rightHight = hight(root.right);
        // if(leftHight >= 0 && rightHight >= 0 &&
        // Math.abs(leftHight-rightHight) <= 1) {
    
    
        //     return Math.max(leftHight,rightHight) + 1;
        // }else {
    
    
        //     return -1;
        // }
        if(leftHight == -1 || rightHight == -1 ||
        Math.abs(leftHight-rightHight) > 1) {
    
    
           return -1;
        }else {
    
    
             return Math.max(leftHight,rightHight) + 1;
        }
    }
    public boolean isBalanced(TreeNode root) {
    
    
        if(hight(root) >= 0) {
    
    
            return true;
        }
        return false;
        //return hight(root) >= 0;
    }


}

猜你喜欢

转载自blog.csdn.net/weixin_44436675/article/details/113444675