前言
莫烦pytorch教材笔记~~~
课程链接
一、使用步骤
1.快速搭建神经层
下面是搭建的两种不同的模式,输出也略有不同。
#method 1
class Net(torch.nn.Module):#从torch那儿继承的模块,nn的功能都包含在这个模块当中
def __init__(self, n_feature,n_hidden, n_output):
super(Net, self).__init__()#继承一些Net的功能~~官方步骤
self.hidden = torch.nn.Linear(n_feature, n_hidden)
self.predict = torch.nn.Linear(n_hidden, n_output)
def forward(self, x):#搭建神经网络
x = F.relu(self.hidden(x))
x = self.predict(x)
return x
net1 = Net(2, 10, 2)#2--特征;一个是x的一个是y的
#method2
net2 = torch.nn.Sequential(
torch.nn.Linear(2, 10),
torch.nn.ReLU(),
torch.nn.Linear(10, 2),
)
print(net1)
print(net2)
-
第一个不同点在于
Class
定义时将hidden
和predict
作为类定义在了初始化里,所以也会有相应的输出。 -
第二个不同点在于激活函数,
method1
里F.relu
相当于一个函数调用,输出的时候不会有,method2
里torch.nn.ReLU()
相当于时定义了一个层结构,输出的时候会相应输出层的名字。
Net(
(hidden): Linear(in_features=2, out_features=10, bias=True)
(predict): Linear(in_features=10, out_features=2, bias=True)
)
Sequential(
(0): Linear(in_features=2, out_features=10, bias=True)
(1): ReLU()
(2): Linear(in_features=10, out_features=2, bias=True)
)
2.保存提取
如果最后图线拟合的不是很好的化,就修改一下学习率,自己调试合适的学习率。
import torch
import torch.nn.functional as F #引入各种函数实现非线性化功能
from torch.autograd import Variable#使用variable的形式来实现
import matplotlib.pyplot as plt
#fake data
x = torch.unsqueeze(torch.linspace(-1, 1,100), dim=1)# x data(tensor), shape=(100,1)#unsqueeze把一维的数据变成二维的数据
y = x.pow(2) + 0.2*torch.rand(x.size())#nosiy y data(tensor), shape=(100,1)
x, y = Variable(x, requires_grad=False), Variable(y, requires_grad=False)
#plt.scatter(x.data.numpy(), y.data.numpy())
#plt.show()
def save():
#save net1
net1 = torch.nn.Sequential(
torch.nn.Linear(1, 10),
torch.nn.ReLU(),
torch.nn.Linear(10,1)
)
optimizer = torch.optim.SGD(net1.parameters(), lr=0.2)
loss_func = torch.nn.MSELoss()
for t in range(100):
prediction = net1(x)
loss = loss_func(prediction, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
torch.save(net1, 'net.pkl')#保存整个神经网络
torch.save(net1.state_dict(), 'net_params.pkl')#保存了整个网络中的parameters
plt.subplot(131)
plt.title('Net1')
plt.scatter(x.data.numpy(), y.data.numpy()) # 原始数据
plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5) # 训练的拟合曲线
def restore_net():#提取神经网络
net2 = torch.load('net.pkl')
prediction = net2(x)
plt.subplot(132)
plt.title('Net2')
plt.scatter(x.data.numpy(), y.data.numpy()) # 原始数据
plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5) # 训练的拟合曲线
def restore_params():#提取神经网络的参数,首先要建立一个和提取net相同的网络
net3 = torch.nn.Sequential(
torch.nn.Linear(1, 10),
torch.nn.ReLU(),
torch.nn.Linear(10,1)
)
net3.load_state_dict(torch.load('net_params.pkl'))
prediction = net3(x)
plt.subplot(133)
plt.title('Net3')
plt.scatter(x.data.numpy(), y.data.numpy()) # 原始数据
plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5) # 训练的拟合曲线
save()
restore_net()
restore_params()
plt.show()
3.批数据训练(mini batch training)
在莫烦的基础上改了一小点,主要是因为版本升级了,有些指令不能用了
import torch
import torch.utils.data as Data#进行小批训练的一个途径
BATCH_SIZE = 5
x =torch.linspace(1, 10, 10)#torch tensor
y =torch.linspace(10, 1, 10)#torch tensor
torch_dataset = Data.TensorDataset(x, y)#用torch定义一个数据库,把x,y放入数据库
loader = Data.DataLoader(
dataset=torch_dataset,
batch_size=BATCH_SIZE,
shuffle=True,#是否打乱顺序
#num_workers=2,#多线程
)#使训练变成mini-batch的函数
for epoch in range(3):
#loader拆包得到的batch_x,batch_y
#一个epoch里有2次迭代 =number of batchs=step
#loader可以定义每个epoch要不要打乱顺序,不打乱每次epoch训练的数据都是一样的顺序
for step, (batch_x, batch_y) in enumerate(loader):
#training
print('Epoch:', epoch,'| Step:', step, '| batch_x:', batch_x.numpy(), '|batch y:', batch_y.numpy())
Epoch: 0 | Step: 0 | batch_x: [4. 2. 5. 8. 9.] |batch y: [7. 9. 6. 3. 2.]
Epoch: 0 | Step: 1 | batch_x: [ 3. 1. 6. 7. 10.] |batch y: [ 8. 10. 5. 4. 1.]
Epoch: 1 | Step: 0 | batch_x: [ 7. 10. 1. 4. 8.] |batch y: [ 4. 1. 10. 7. 3.]
Epoch: 1 | Step: 1 | batch_x: [9. 2. 3. 6. 5.] |batch y: [2. 9. 8. 5. 6.]
Epoch: 2 | Step: 0 | batch_x: [5. 6. 8. 4. 9.] |batch y: [6. 5. 3. 7. 2.]
Epoch: 2 | Step: 1 | batch_x: [ 7. 2. 1. 3. 10.] |batch y: [ 4. 9. 10. 8. 1.]
4. Optimizer优化器
import torch
import torch.utils.data as Data
import torch.nn.functional as F
import matplotlib.pyplot as plt
# torch.manual_seed(1) # reproducible
LR = 0.01
BATCH_SIZE = 32
EPOCH = 12
# fake dataset
x = torch.unsqueeze(torch.linspace(-1, 1, 1000), dim=1)
y = x.pow(2) + 0.1*torch.normal(torch.zeros(*x.size()))
# #plot dataset
#plt.scatter(x.numpy(), y.numpy())
#plt.show()
# put dateset into torch dataset
torch_dataset = Data.TensorDataset(x, y)
loader = Data.DataLoader(dataset=torch_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=2,)
# default network
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.hidden = torch.nn.Linear(1, 20) # hidden layer
self.predict = torch.nn.Linear(20, 1) # output layer
def forward(self, x):
x = F.relu(self.hidden(x)) # activation function for hidden layer
x = self.predict(x) # linear output
return x
if __name__ == '__main__':
# different nets
net_SGD = Net()
net_Momentum = Net()
net_RMSprop = Net()
net_Adam = Net()
nets = [net_SGD, net_Momentum, net_RMSprop, net_Adam]
# different optimizers
opt_SGD = torch.optim.SGD(net_SGD.parameters(), lr=LR)
opt_Momentum = torch.optim.SGD(net_Momentum.parameters(), lr=LR, momentum=0.8)
opt_RMSprop = torch.optim.RMSprop(net_RMSprop.parameters(), lr=LR, alpha=0.9)
opt_Adam = torch.optim.Adam(net_Adam.parameters(), lr=LR, betas=(0.9, 0.99))
optimizers = [opt_SGD, opt_Momentum, opt_RMSprop, opt_Adam]
loss_func = torch.nn.MSELoss()#回归误差计算公式
losses_his = [[], [], [], []] # record loss
# training
for epoch in range(EPOCH):
print('Epoch: ', epoch)
for step, (b_x, b_y) in enumerate(loader): # for each training step
#zip() 函数用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表。
for net, opt, l_his in zip(nets, optimizers, losses_his):#三个都是列表形式,将其提取出来
output = net(b_x) # get output for every net
loss = loss_func(output, b_y) # compute loss for every net
opt.zero_grad() # clear gradients for next train
loss.backward() # backpropagation, compute gradients
opt.step() # apply gradients
l_his.append(loss.data.numpy()) # loss recoder
labels = ['SGD', 'Momentum', 'RMSprop', 'Adam']
for i, l_his in enumerate(losses_his):
plt.plot(l_his, label=labels[i])
plt.legend(loc='best')
plt.xlabel('Steps')
plt.ylabel('Loss')
plt.ylim((0, 0.2))
plt.show()
总结
今天就学到这儿了~~~ 周末玩得太high了,木有看完视频,原本打算周末学完视频的。