Deep Learning
发展历史
Three Steps for Deep Learning
Step 1: Neural Network
Fully Connect Feedforward Network
Deep = Many hidden layers
Matrix Operation
Neural Network
FAQ
Step 2: goodness of function
扫描二维码关注公众号,回复:
12919715 查看本文章

Step 3: pick the best function
Gradient Descent
Backpropagation
Why Deep?(深度学习的好处)
Modularization
End-to-end Learning
Tips for Deep Learning
1. New activation function
梯度消失
新的激活函数:ReLU
Maxout(Learnable activation function)
Maxout - Training
2. Adaptive Learning Rate
Adagrad
RMSProp(加一个概率α)
Adam (RMSProp + Momentum)
Momentum(动量)
3. Early Stopping
4. Regularization(Weight Decay)
L2 regularization:
L1 regularization:
5. Dropout
Training: