对模型超参数进行调优

岭回归对线性回归的优化在于在线性回归的损失函数中加入L2正则化项从而牺牲无偏性降低方差。但是,大家是否想过这样的问题:在L2正则化中参数 应该选择多少?是0.01、0.1、还是1?到目前为止,我们只能凭经验或者瞎猜,能不能找到一种方法找到最优的参数 ?事实上,找到最佳参数的问题本质上属于最优化的内容,因为从一个参数集合中找到最佳的值本身就是最优化的任务之一,我们脑海中浮现出来的算法无非就是:梯度下降法、牛顿法等无约束优化算法或者约束优化算法,但是在具体验证这个想法是否可行之前,我们必须先认识两个最本质概念的区别。

  • 参数与超参数:
    我们很自然的问题就是岭回归中的参数 λ \lambda λ和参数w之间有什么不一样?事实上,参数w是我们通过设定某一个具体的 λ \lambda λ后使用类似于最小二乘法、梯度下降法等方式优化出来的,我们总是设定了 λ \lambda λ是多少后才优化出来的参数w。因此,类似于参数w一样,使用最小二乘法或者梯度下降法等最优化算法优化出来的数我们称为参数,类似于 λ \lambda λ一样,我们无法使用最小二乘法或者梯度下降法等最优化算法优化出来的数我们称为超参数。

模型参数是模型内部的配置变量,其值可以根据数据进行估计。

  • 进行预测时需要参数。
  • 它参数定义了可使用的模型。
  • 参数是从数据估计或获悉的。
  • 参数通常不由编程者手动设置。
  • 参数通常被保存为学习模型的一部分。
  • 参数是机器学习算法的关键,它们通常由过去的训练数据中总结得出。

模型超参数是模型外部的配置,其值无法从数据中估计。

  • 超参数通常用于帮助估计模型参数。
  • 超参数通常由人工指定。
  • 超参数通常可以使用启发式设置。
  • 超参数经常被调整为给定的预测建模问题。

网格搜索GridSearchCV():
网格搜索的思想非常简单,比如你有2个超参数需要去选择,那你就把所有的超参数选择列出来分别做排列组合。举个例子: λ = 0.01 , 0.1 , 1.0 \lambda=0.01,0.1,1.0 λ=0.01,0.1,1.0 α = 0.01 , 0.1 , 1.0 \alpha=0.01,0.1,1.0 α=0.01,0.1,1.0 ,你可以做一个排列组合,即:{[0.01,0.01],[0.01,0.1],[0.01,1],[0.1,0.01],[0.1,0.1],[0.1,1.0],[1,0.01],[1,0.1],[1,1]} ,然后针对每组超参数分别建立一个模型,然后选择测试误差最小的那组超参数。换句话说,我们需要从超参数空间中寻找最优的超参数,很像一个网格中找到一个最优的节点,因此叫网格搜索。

随机搜索 RandomizedSearchCV() :
网格搜索相当于暴力地从参数空间中每个都尝试一遍,然后选择最优的那组参数,这样的方法显然是不够高效的,因为随着参数类别个数的增加,需要尝试的次数呈指数级增长。有没有一种更加高效的调优方式呢?那就是使用随机搜索的方式,这种方式不仅仅高效,而且实验证明,随机搜索法结果比稀疏化网格法稍好(有时候也会极差,需要权衡)。参数的随机搜索中的每个参数都是从可能的参数值的分布中采样的。与网格搜索相比,这有两个主要优点:

  • 可以独立于参数数量和可能的值来选择计算成本。
  • 添加不影响性能的参数不会降低效率。

下面我们使用SVR的例子进行调优:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
经过我们不懈的努力,从收集数据集并选择合适的特征、选择度量模型性能的指标、选择具体的模型并进行训练以优化模型到评估模型的性能并调参,我们认识到了如何使用sklearn构建简单回归模型。

感谢Datawhale团队为开源学习做出的贡献!
参考文献:
https://github.com/datawhalechina/team-learning-data-mining/tree/master/EnsembleLearning

猜你喜欢

转载自blog.csdn.net/weixin_43595036/article/details/115160758