LeetCode 74. 搜索二维矩阵 二分/medium


1.Description

编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值。该矩阵具有如下特性:

每行中的整数从左到右按升序排列。
每行的第一个整数大于前一行的最后一个整数。


2.Example

在这里插入图片描述

输入:matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 3
输出:true

3.Solution

1.找到target所在列,在遍历该列

class Solution {
    
    
    public boolean searchMatrix(int[][] matrix, int target) {
    
    
    	int m = matrix.length-1;
    	int n = matrix[0].length-1;
    	for(int j=n;j>=0;j--) {
    
    
    		if(target>=matrix[0][j]&&target<=matrix[m][j]) {
    
    
    			for(int i=0;i<=m;i++) {
    
    
    				if(matrix[i][j]==target) {
    
    
    					return true;
    				}
    			}
    		}
    	}
    	return false;
    }
}

2.两次二分查找

二分查找元素所在列,然后对该列二分查找

class Solution {
    
    
    public boolean searchMatrix(int[][] matrix, int target) {
    
    
        int rowIndex = binarySearchFirstColumn(matrix, target);
        if (rowIndex < 0) {
    
    
            return false;
        }
        return binarySearchRow(matrix[rowIndex], target);
    }

    public int binarySearchFirstColumn(int[][] matrix, int target) {
    
    
        int low = -1, high = matrix.length - 1;
        while (low < high) {
    
    
            int mid = (high - low + 1) / 2 + low;
            if (matrix[mid][0] <= target) {
    
    
                low = mid;
            } else {
    
    
                high = mid - 1;
            }
        }
        return low;
    }

    public boolean binarySearchRow(int[] row, int target) {
    
    
        int low = 0, high = row.length - 1;
        while (low <= high) {
    
    
            int mid = (high - low) / 2 + low;
            if (row[mid] == target) {
    
    
                return true;
            } else if (row[mid] > target) {
    
    
                high = mid - 1;
            } else {
    
    
                low = mid + 1;
            }
        }
        return false;
    }
}

3.一次二分查找

将二维数组当成一位算,对数组下标进行二分查找

class Solution {
    
    
    public boolean searchMatrix(int[][] matrix, int target) {
    
    
    	int m = matrix.length;
    	int n = matrix[0].length;
    	int left = 0,right = m*n-1;
    	while(left<=right) {
    
    
    		int mid = (right-left)/2+left;
    		if(target>matrix[mid/n][mid%n]) {
    
    
    			left = mid+1;
    		}else if(target<matrix[mid/n][mid%n]) {
    
    
    			right = mid-1;
    		}else {
    
    
    			return true;
    		}
    	}
    	return false;
    }
}

猜你喜欢

转载自blog.csdn.net/weixin_45736160/article/details/115326698